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ABSTRACT 

Mehmandoost Kotlar, Ali. Mitigation of nitrate leaching in tropical soils using layered 

double hydroxide. 2020. 109 p. Tese (Doutorado em Ciências) - Centro de Energia Nuclear na 

Agricultura, Universidade de São Paulo, Piracicaba, 2020. 

 

Nitrate is the most intensively applied nutrient to agricultural land. Being a very mobile anion, 

even more in tropical acidic soils, its leaching easily contaminates surface and groundwater 

thus causing large financial loss for farmers. Estimation of water and solute fluxes using 

numerical models can be used to evaluate the efficiency of any hypothetical fertilizer 

management under a variety of soil and climatic conditions. As input, these models mainly 

require soil hydraulic properties, meteorological data and management scenarios. Therefore, 

the first objective of this study was to estimate soil hydraulic properties including water 

retention and hydraulic conductivity functions using easily measurable soil properties such as 

texture, organic matter or bulk density. Regarding nitrogen management practices, it is 

supposed that slow release fertilizers gradually release nitrate for root uptake leading to a 

reduction of nitrate loss, making them a good alternative to conventional fertilizers. This 

process was hypothetically modelled assuming application of slow-release fertilizers with 

different half-lives of 10, 20, 30 and 40 days under cultivation of summer maize and applying 

the commonly recommended 180 kg N ha-1. The yield of maize under application of SRFs with 

half-lives of 30 and 40 days showed to increase up to 200 kg N ha-1 and reduce leaching of 

nitrogen by 30 to 40 kg ha-1, unless bottom layers of the soil profile are very permeable. Finally, 

layered double hydroxides (LDH) which are supposed to be potentially applicable as slow 

release nitrate fertilizers were synthesized using a coprecipitation method and characterized by 

ICP-OES, XRD, FTIR and TGA analyses for nitrate release and leaching experiments. Batch 

experiments with LDH particles KCl, K2SO4 or CaCl2 showed that 60 to 100% of intercalated 

nitrate is exchanged by anions within a few hours. Soil column studies with soils from temperate 

(Denmark) and tropical (Brazil) regions confirmed rapid release of nitrate from LDH. 

Application of LDH to a soil profile with bulk density of 1300 kg m-3, 0.3 m rooting depth and 

a typical rate of field nitrogen application (120 kg ha-1) caused an accumulation of 400 to 1050 

kg Mg and 230 to 478 kg of Fe or Al depending on type of LDH. This high load of residual 

metals and the relatively quick release of nitrate may restrain the use of the LDH as slow release 

nitrate source.  

 

Keywords: Layered double hydroxide. Nitrate leaching. Pedotransfer functions. Nitrate 

Transport modeling. Soil hydraulic properties. 
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RESUMO 

Mehmandoost Kotlar, Ali. Mitigação da lixiviação de nitrato em solos tropicais usando 

hidróxidos duplos lamelares. 2020. 109 p. Tese (Doutorado) - Centro de Energia Nuclear na 

Agricultura, Universidade de São Paulo, Piracicaba, 2020. 

 

O nitrato é o nutriente mais intensamente aplicado às terras agrícolas. Sendo um ânion muito 

móvel, especialmente em solos ácidos tropicais, sua lixiviação pode contaminar as águas 

superficiais e subterrâneas e causar grandes perdas financeiras para os agricultores. A 

estimativa de fluxos de água e solutos usando modelos numéricos é uma alternativa para avaliar 

a eficiência de qualquer manejo hipotético de fertilizantes sob diversas condições climáticas e 

do solo. Esses modelos requerem como dados de entrada principalmente as propriedades 

hidráulicas do solo, dados metrológicos e cenários de manejo. O primeiro objetivo deste estudo 

é estimar as propriedades hidráulicas do solo, incluindo funções de retenção de água e 

condutividade hidráulica, usando propriedades facilmente mensuráveis do solo, como textura, 

matéria orgânica e densidade do solo. Em relação às práticas de manejo do nitrogênio, supõe-

se que os fertilizantes de liberação lenta (FLL) sejam alternativas ideais, liberando 

gradualmente o nitrato para ser absorvido pelas raízes, resultando na minimização da perda de 

nitrato. Esse processo foi hipoteticamente modelado, assumindo a aplicação de fertilizante de 

liberação lenta com tempos de meias-vida de 10, 20, 30 e 40 dias sob cultivo de milho de verão 

e 180 kg N ha-1 usualmente recomendados. Os resultados demonstraram que o rendimento de 

milho sob aplicação de FLLs com meia-vida de 30 e 40 dias pode aumentar até 200 kg N ha-1 

e a lixiviação de nitrogênio diminui de 30 a 40 kg ha-1, a menos que as camadas inferiores do 

perfil do solo sejam muito permeáveis. Por fim, os hidróxidos duplos em camadas (LDH) são 

conhecidos por serem fertilizantes de liberação lenta de nitrato, sintetizados pelo método de co-

precipitação e caracterizados pela análise de ICP-OES, DRX, FTIR e TGA para liberação de 

nitrato e experimentos que avaliam lixiviação. Experimentos em lotes com partículas de LDH 

KCl, K2SO4 ou CaCl2 mostraram que 60 a 100% do nitrato intercalado é trocado por ânions 

dentro de algumas horas. Estudos de coluna de solo com solos das regiões temperada 

(Dinamarca) e tropical (Brasil) confirmaram a liberação rápida de nitrato do LDH. A aplicação 

de LDH em um perfil de solo com densidade de 1300 kg m-3, profundidade de raízes de 0,3 m 

e uma taxa típica de aplicação de nitrogênio no campo (120 kg ha-1) causaram acúmulo de 400 

a 1050 kg de Mg e 230 a 478 kg de Fe ou Al, dependendo do tipo de LDH. Essa alta carga de 

metais residuais pode restringir o uso do LDH como fonte de nitrato de liberação lenta.  

 

 

Palavras-chave: Hidróxidos duplos lamelares. Lixiviação o nitrato. Funções de 

pedotransferência. Propriedades físicas do solo. 
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1 General Introduction  

 

1.1 Thesis structure 

 

A largely agricultural-based economy has turned Brazil into one of the major consumers 

of fertilizer worldwide, with 9.65 million tons of imported NPK used by farmers in 2013. 

Recent data reveal around 16 million tons of NPK were imported in 2016, while Nitrogen 

fertilizer import increased 43% year over year. However, 40-70% of applied N and 80-90% of 

applied P are lost to the wider environment or become chemically bound to the soil making it 

practically unavailable to crops (de CASTRO et al., 2017; GIROTO et al., 2017).  

Any soil water balance component such as precipitation, evaporation and 

evapotranspiration influences nitrate transport in soil, as more downward movement results in 

more nitrate leaching. Soil hydraulic properties and climate conditions besides cropping system 

can potentially describe possible nitrate leaching out of the root zone (WANG; LI 2019). 

Therefore, a simple and robust prediction of annual drainage from the soil profile under climate 

boundary conditions and cropping or bare soil systems can give sufficient information 

regarding potential nitrate leaching. Chapter 2 of this thesis explains how annual drainage can 

be estimated from soil hydraulic properties under climatic conditions of São Paulo State 

introduces robust machine learning algorithms to predict them. 

Since numerical models simulating nitrogen and water fluxes within a soil profile 

require soil hydraulic properties (SHP), the pedotransfer functions (PTFs) developed in Chapter 

2 were calibrated to estimate SHPs from easily measured soil properties such as texture, organic 

matter and bulk density for an available dataset for Danish soils. Upon estimating drier water 

contents of soil samples using PTFs, they were combined with the results of automatic drip 

infiltrometer (ADI) experiments, measuring soil hydraulic conductivities near saturation, to 

obtain SHPs. The successful extension of ADI by predicted water contents of PTFs led to very 

accurate estimation of van Genuchten (1980) parameters, as described in Chapter 3.  

The SWAP-1D hydrological model with a nitrogen balance module (KROES et al., 

2009) was used in Chapter 4 to model hypothetical slow release fertilizers with different half-

lives 10, 20, 30 and 40 days. The soil hydraulic parameters of typical layered profiles nearby 

Piracicaba under cultivation of summer maize and the recommended 180 kg N ha-1 was 

considered as input of the model. Typical manure fertilization to provide 180 kg N ha-1 was 

simulated and then SRFs were applied in two different ways. First the 180 kg N ha-1 was added 
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in a single application on the sowing date and secondly we assumed the application of sufficient 

weight of SRFs to provide the plant with 180 kg N ha-1 during the cropping period.  The yield 

of maize under application of SRFs with half-lives of 30 and 40 days was shown to can increase 

yields up to 200 kg ha-1 and leaching of nitrogen diminished by 30 to 40 kg ha-1. 

Layered double hydroxides (LDH), natural or synthetic layered mineral compounds, 

with a structure identical to the mineral brucite Mg(OH)2, contain a fraction of trivalent cations 

beside divalent cations and can be expressed by the formula [𝑀1−𝑥
2+ 𝑀𝑥

3+(𝑂𝐻)2]𝐴𝑥/𝑚
𝑚− 𝑛𝐻2𝑂, 

where M2+ and M3+ are divalent and trivalent metals and An- is the interlayer anion and x=M3+ 

/ (M3+ + M2+) (BENÍCIO et al., 2017; TORRES-DORANTE et al., 2008). Great efforts have 

been made to confirm effective functionality of LDH in anion adsorption however, for 

agronomical purposes the retardation should be taken into account. Therefore, the main 

objective of the final Chapter 5 was to investigate (i) how fast the intercalated nitrate can be 

released from LDH molecules? (ii) how strong the nitrate from mineral fertilizer can be 

absorbed by LDH particles and finally (iii) what is the amount LDH residues, including Mg and 

Fe hydroxides, that is accumulated in the soil profile? The main conclusions of this thesis and 

some recommendations for future studies are described in Chapter 6.  
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2 Machine learning based prediction of drainage in layered soils using a soil 

drainability index 1 

 

Abstract 

 

Numerical modelling of water flow allows predicting the rainwater partitioning into 

evaporation, deep drainage and transpiration for different seasonal, crop and soil type scenarios. 

We proposed and tested a single indicator for drainage estimation, the soil drainability index 

(SDI) based on the near saturated hydraulic conductivity of each layer. We studied rainfall 

partitioning for eight soils from Brazil and seven different real and generated weather datasets 

under scenarios without crop and with a permanent grass cover with three rooting depths, using 

the HYDRUS-1D model. The SDI showed a good correlation to simulated drainage of the soils. 

Moreover, well-trained machine-learning methods including linear and stepwise linear model 

(LM, SWLM) besides ensemble regression with boosting and bagging algorithm (ENS-LB, 

ENS-B), support vector machines (SVMs) and Gaussian process regression (GPR) predicted 

monthly drainage from bare soil (BS) and grass covered lands (G) using soil-plant-atmosphere 

parameters (i.e. SDI, monthly precipitation and evapotranspiration or transpiration). The RMSE 

values for testing data in BS and G were low, around 1.2 and 1.5 cm month- 1 for all methods.  

Keywords: evapotranspiration; hydraulic conductivity; HYDRUS-1D; machine learning; 

subsurface drainage

                                                           
1 Kotlar, A.M., Iversen, B.V., De Jong van Lier, Q. 2019. Machine learning-based prediction of drainage in layered 

soils using a soil drainability index. Soil Systems 3:30, 2019. DOI:10.3390/soilsystems3020030. 
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2.1 Introduction 

 

An increase of around 70% in food production could provide the required global food 

demand by 2050 for 9 billion people (FAO, 2009), however bottlenecks to increase the 

efficiency of agriculture should be mitigated by best management practices. Bottlenecks 

include the significant loss of water through evaporation, drainage and surface runoff, where 

the last two imply in the loss of nutrients as well (JÄGERMEYR et al., 2015). The effective 

factors on fluxes such drainage are broadly related to soil type, land use including vegetal cover 

and climatic characteristics such as rainfall duration and intensity. Soil features are summarized 

in soil hydraulic properties (SHP) including hydraulic conductivity and soil water retention 

curve. Climates with high temperatures, atmospheric demand, annual water excess and rainfall 

intensity favor these processes. This is the case for large parts of Brazil with a sub-humid 

climate and yearly rainfall ranging from 700 to 2100 mm. Brazil´s position as a large producer 

of soybean, maize, among others (SENTELHAS et al., 2015), highlights the importance of in-

depth knowledge of soil-plant atmosphere interaction to raise food production. 

Understanding water fluxes like transpiration, evaporation and drainage in cultivated 

areas represents an ideal concept regarding the role of cultivation to minimize losses from 

drainage and to maximize productive water transpired by plants. Measurement techniques such 

as isotopic determinations, eddy covariance, lysimetry and sap flow measurements are used to 

trace fluxes in the soil-plant-atmosphere system. Zero flux plane method, single or double rings 

and well permeameter are also frequently used methods to estimate drainage or ground water 

recharge (WU; SHUKLA; SHRESTHA, 2016). These measurements are valuable but 

expensive and unavailable in the field testing cases.    

Calibrated and validated computer-based modelling tools can add to the results of these 

direct methods. Numerical solutions of the Richards’ equation with sink term (e.g. root water 

uptake) can be included in a model algorithm and serve as a robust tool to evaluate the 

partitioning of precipitation into evapotranspiration and percolation under various soil and 

cropping conditions. HYDRUS-1D (SIMUNEK; VAN GENUCHTEN; SEJNA, 2016) is such 

a model with a good performance in simulating water, solute and heat transport in variably 

saturated media, yielding acceptable predictions of the fate of water in the soil- plant-

atmosphere system. HYDRUS-1D has been widely tested and calibrated and resulted in 

successful simulation of soil moisture dynamics (CHEN; WILLGOOSE; SACO, 2014;  

LIU et al., 2015), groundwater recharge (LETERME; MALLANTS; JACQUES., 2012;  
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RIES et al., 2015; PATLE et al., 2015), shallow groundwater contribution into soil moisture of 

root zone under various crop types (ZHU et al., 2009; SHOUSE; AYARS; SIMUNEK, 2011, 

ZHU et al., 2013; HOU et al., 2017) and water, solute and heat transport in soil combined with 

cropping systems (ZHAO et al., 2016; YANG et al., 2017; HE et al., 2017).  

Using machine-learning methods to capture functional relation between input and 

output can improve the prediction of soil-plant-atmosphere phenomena with high complexities. 

These learning methods without prior knowledge of physical properties of variables have been 

used for simulation of soil hydraulic parameters such as water retention data and (near) 

saturated hydraulic conductivity prediction (LAMORSKI et al., 2008; ELBISY, 2015; 

KOTLAR; IVERSEN; DE JONG VAN LIER, 2019). 

Comprehensive studies regarding rainfall partitioning over the soil water balance 

components in typical croplands in Brazil are missing, and the objective of this study is to 

develop an index capable of predicting the sharing of transpiration, evaporation and deep 

drainage fluxes under bare soil and cropped scenarios in layered soil. The indicator was 

evaluated for determining this rainfall sharing in rainfed scenarios for bare soil and grass-

vegetated scenarios using real and downscaled generated daily meteorological data and detailed 

measured soil hydraulic properties. Finally, various parametric and nonparametric machine 

learning methods were compared in order to predict drainage from bottom of the soil profile by 

means of soil-atmosphere-(plant) input variables under bare and planting conditions. 

 

2.3 Materials and Methods 

2.3.1 Stochastic Weather Generation 

To monitor the effect of various distributions of weather variables, synthetic daily 

weather series were generated using the downscaling based model LARS-WG (SEMENOV; 

BARROW; LARS, 2002). The weather generator utilizes input observed daily weather for a 

given site to determine parameters attributing probability distributions for weather variables as 

well as correlations between the variables. In contrast to LARS-WG, Markov chain-based 

algorithms have limited memory for rare events which is a vital parameter in agriculturally 

based problems, e.g. the strong effect of long dry days on yield and soil plant water availability. 

The simulation of rainfall occurrence is based on distributions of the length of continuous 

sequences, or series, of wet and dry days. The amount of precipitation is simulated by a  
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semi-empirical distribution for each month. Semi-empirical distributions are defined as a 

histogram with several intervals. Temperature and radiation are conditioned on the wet/dry 

status of a day and cross-correlated (SEMENOV; BARROW; LARS, 2002). 

Future climate projections were generated from Coupled Model Intercomparison 

Project phase 5 (CMIP5) GCMs under both (Representative Concentration Pathway) RCP4.5 

and RCP8.5 projections for 50 years by LARS-WG. RCP 4.5 and 8.5 are long-term scenarios 

by raising global emissions of greenhouse gases, short-lived species, and land-use/land-cover 

cause radiative forcing pathway leading to 4.5 and 8.5 (W m-2), equivalent to 650 and 1370 

ppm CO2 in the year 2100.  

 

2.3.2 Soil, Crop and Meteorological Data 

Required soil hydraulic properties were retrieved from (DE JONG VAN LIER, 2017) 

for eight Southeast-Brazilian soils, latitudes around 21˚ S (Figure 2.1), covering a wide range 

of textures and soil classes. Retention data were obtained in undisturbed samples using standard 

laboratory procedures (tension table and pressure chamber) for several layers (between 5 and 

10 layers covering the range between the surface and 1 m depth). Hydraulic conductivity data 

were achieved at the same depths from internal drainage experiments under field conditions. 

Hydraulic properties were expressed in terms of parameters of the van Genuchten (1980) 

equations’ system (VAN GENUCHTEN, 1980) (Table 2.1). 

 
Figure 2.1. Geographical position of sampled soils (A to H) and the University of São Paulo 

meteorological station (MS) in Piracicaba (SP), Brazil. 
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Table 2.1 Hydraulic parameters of the soils according to the van Genuchten (1980) equation 
Soil  Layer (cm) θr θs α (cm-1) n Ks(cm d-1) λ 

A  

Sandy Clay 

Loam 

0-20 0.186 0.436 0.0263 2.328 27.18 2.02 

20-30 0.179 0.332 0.0275 1.697 25.49 0 

30-40 0.202 0.293 0.0070 2.919 42.29 7.17 

40-50 0.186 0.350 0.0262 1.523 42.77 0 

50-60 0.218 0.333 0.0154 2.570 34.12 0 

60-70 0.184 0.303 0.0181 1.869 43.24 0 

70-80 0.179 0.408 0.0269 2.754 118.79 1.99 

80-100 0.169 0.353 0.0289 1.735 79.29 0 

B  

Clay 

0-30 0.293 0.505 0.0172 1.525 10.43 8.21 

30-45 0.272 0.506 0.0169 1.415 11.12 8.82 

45-60 0.288 0.469 0.0219 1.397 24.00 5.12 

60-75 0.289 0.418 0.0095 1.901 27.25 3.83 

75-90 0.255 0.483 0.0201 1.535 75.11 0 

90-100 0.270 0.409 0.0092 2.377 97.38 0 

C 

Sandy Clay 

Loam 

0-15 0.113 0.469 0.0593 1.608 38.20 -0.36 

15-30 0.138 0.362 0.0421 1.759 32.80 1.13 

30-45 0.112 0.332 0.0373 1.551 24.00 2.16 

45-60 0.144 0.329 0.0392 1.527 17.50 1.30 

60-100 0.142 0.351 0.0424 1.487 17.50 1.76 

D 

Clay 

0-20 0.275 0.463 0.0232 1.389 76.42 3.93 

20-40 0.290 0.447 0.0181 1.356 113.85 4.71 

40-60 0.287 0.444 0.0136 1.443 120.54 4.98 

60-80 0.270 0.506 0.0254 1.590 1352.34 4.96 

80-100 0.257 0.513 0.0265 1.583 2014.19 4.97 

E 

Clay 

0-20 0.270 0.487 0.0647 1.925 163.1 3.41 

20-30 0.267 0.444 0.0212 2.014 46.62 1.70 

30-40 0.263 0.441 0.0223 1.843 53.62 1.25 

40-50 0.270 0.489 0.053 1.919 174.25 2.94 

50-60 0.262 0.558 0.0468 1.931 225.07 1.09 

60-70 0.253 0.439 0.0145 1.717 31.30 0.01 

70-80 0.231 0.516 0.0242 1.535 97.42 -0.28 

80-100 0.239 0.517 0.0211 1.494 88.55 -0.44 

F 

Sandy Loam 

0-15 0.086 0.428 0.079 1.360 23.28 -0.47 

15-40 0.123 0.370 0.0394 1.452 85.92 8.62 

40-65 0.152 0.340 0.0171 1.805 131.52 6.12 

65-90 0.132 0.360 0.0168 1.596 152.64 -3.02 

90-100 0.117 0.340 0.0131 1.482 102.72 0 

G 

Sandy 

0-10 0.094 0.398 0.0382 3.808 429.89 0 

20-30 0.068 0.468 0.0985 1.694 472.85 -1.70 

20-30 0.085 0.503 0.0778 1.800 522.89 -0.77 

30-40 0.048 0.480 0.0694 2.427 1075.9 0 

40-50 0.050 0.453 0.069 2.576 781.20 0 

50-60 0.044 0.441 0.0637 2.864 819.26 0 

60-70 0.099 0.395 0.0714 4.345 845.33 0 

70-80 0.072 0.426 0.0587 3.324 575.35 0 

80-90 0.054 0.447 0.0915 2.257 621.58 0 

90-100 0.054 0.443 0.0872 2.479 1074.03 0 

H 

Clay 

0-10 0.228 0.326 0.0225 1.656 12.94 0 

20-30 0.221 0.361 0.0311 1.457 49.08 0 

20-30 0.221 0.356 0.0233 1.668 238.99 8.71 

30-40 0.225 0.356 0.0452 1.378 184.30 6.19 

40-50 0.248 0.360 0.0213 1.816 106.01 9.69 

50-60 0.252 0.324 0.1184 1.364 781.08 0 

60-70 0.253 0.390 0.0184 1.545 54.58 4.34 

70-80 0.251 0.364 0.0335 1.497 34.61 0 

80-90 0.203 0.385 0.0483 1.483 457.82 -3.31 

90-100 0.254 0.377 0.0286 2.159 795.70 5.49 

 

  



31 

 Daily meteorological data were obtained for a 38-year period (1978-2017) from the 

University of São Paulo weather station in Piracicaba, Brazil (22.703˚S;47.624˚W, Figure 2.1), 

representing the sub-tropical winter-dry climate (Koeppen Cwa) of southeast Brazil. Potential 

(reference) evapotranspiration for a hypothetical grass surface was calculated based on the 

Penman-Monteith (ET0P, mm d⁻1) equation (2.1) (ALLEN et al., 1998): 

𝐸𝑇0𝑃 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇𝑎𝑣𝑒 + 273

𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
 

(2.1) 

 

Or, in case wind speed is unavailable, using the Hargreaves (ET0H, mm d⁻1) equation: 

𝐸𝑇0𝐻 = 0.0055𝑅𝑠(17.8 + 𝑇𝑎𝑣𝑒)
 

(2.2) 

 

In equations (2.1) and (2.2), Rn and Rs are the net radiation at the crop surface and solar 

radiation (MJ m-2 d-1), G represents the soil heat flux density which is usually ignored in daily 

calculations (MJ m-2 d-1), T (℃) and u2 (m s-1) are mean temperature and wind speed at 2 m 

height, (es-ea) is the vapor pressure deficit (kPa), Δ is the slope of the vapour pressure curve 

(kPa ℃-1) and γ is the psychometric constant, equal to 0.06317 kPa ℃-1 for the Piracicaba 

weather station. 

 

2.3.3 HYDRUS-1D numerical modelling 

The HYDRUS-1D model numerically simulates the temporal and spatial changes in 

water content by the Richards’ equation: 

∂θ

∂t
=

∂

∂z
[k(h)

∂h

∂z
− k(h)] − S(h, z, t) (2.1) 

 In this equation, θ is soil water content (cm3cm-3), t is time (d), z is the vertical space 

coordinate (cm), k is the hydraulic conductivity (cm d-1), h represents pressure head (cm) and  

S is the sink term (d-1) accounting for the volume of water removed from the soil per unit of 

time due to crop water uptake and described by 

S(h, z, t) = α(h)Sp = α(h)β(z, t)Tp (2.2) 
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where Sp is the potential water uptake rate (d-1) calculated from the potential transpiration rate 

Tp (cm d-1) distributed over the root zone based on the normalized root density distribution 

function β (z,t) (cm-1). 0 ≤ α(h) ≤ 1 is a dimensionless root water uptake stress reduction 

function proposed by Feddes et al. (1978) defined by crop dependent parameters described for 

grass in (FEDDES; KOWALIK; ZARADNY, 1978). Tp is calculated by  

Tp(t) = ET0(1 − exp(−k𝑒𝑥LAI(t))) (2.3) 

where kex is an extinction coefficient usually within the range between 0.5-0.75 and LAI is 

leaf area index. 

The atmospheric boundary condition at the top of the soil surface is supplied to 

HYDRUS-1D by the daily variable potential evaporation Ep(t) (2.4) and precipitation P, besides 

a minimum and maximum allowed pressure head at the soil surface (hCritA and hS).  

Ep(t) = ET0(t) − Tp(t) = ET0(− exp(−kLAI(t))) (2.4) 

 

A unit vertical hydraulic gradient or free drainage boundary condition was implemented 

for the lower boundary of the 100 cm soil profile as the groundwater level is very deep in these 

soils. For all scenarios, the initial condition was set to -100 cm pressure head in the entire 

profile. Temporal and spatial discretization for finite element method of HYDRUS-1D varied 

significantly to reach the lowest possible water balance error by the end of each simulation for 

each soil profile. 

Simulations were performed for two standard conditions bare soil (BS; no crop, no 

transpiration) and for grass-covered soil (G). One real set of weather data for 38 years and six 

generated ones by LARS-WG for 50 years were used for the top boundary conditions. As 

reference crop, we simulated grass with a LAI equal to 2.88 (ALLEN et al., 1998) and with 

three different rooting depths (30, 60 or 90 cm), referred to as G30, G60 and G90 scenarios. 

Accordingly, four cropping/rooting scenarios (BS, G30, G60, G90) together with eight soils 

and seven weather data sets resulted in 224 different scenarios. 
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2.3.4 Soil Drainability Index 

An a priori prediction of drainage throughout soil profile properties would be a useful 

tool for irrigation and fertilization management, but without experimentation or numerical 

modelling this is not an easy task, especially in nonuniform layered soils. In the drainage 

process, each soil layer has its own specific impact on water transmission to the bottom of the 

profile. There are many factors that could be considered to examine the effect of each layer on 

the overall drainability, summarized in their hydraulic properties such as saturated and 

unsaturated hydraulic conductivity and corresponding water contents. Additionally, the 

thickness of each layer is effective as it represents the flow domain. Consequently, a conceptual 

indicator could be defined under some assumptions that would correspond to overall 

drainability of a soil. It would give a general idea about to what extent leaching occurs under 

bare soil condition. We call this indicator the Soil Drainability Index (SDI). 

Considering a soil with n layers, each with a thickness Li (L) and a water content  

θi (L3 L-3), it is reasonable to assume that maximum water storage (θs,iLi) is related to 

drainability. Furthermore, the water conducting properties of the layers will affect the rate at 

which drainage occurs. Hydraulic conductivity K may vary by orders of magnitude between 

soil layers, and the relative hydraulic conductivity (K/Ksat) seems a more plausible alternative. 

Then, drainability might be correlated to the sum of products of water storage and relative  

K for all soil layers. To test this hypothesis, we considered the soil profile at near saturation  

(ns in parameter subscripts) with a static value of pressure head to be evaluated at values  

of -1 or -3 cm. These small tensions can remove the effect of macropore flow to a great extent, 

especially as saturated hydraulic conductivity measurements were performed on undisturbed 

samples. In order not to make the drainability to increase with increasing soil depth, the total 

sum of values was divided by the total depth, resulting in the following expression for the 

dimensionless Soil Drainability Index (SDI):  

𝑆𝐷𝐼 = (
1

∑ 𝐿𝑖

) [∑ (
𝐾(𝜃𝑛𝑠)𝑖

𝐾𝑠𝑖

𝐿𝑖𝜃𝑠𝑖
)

𝑛

𝑖=1

] (2.5) 
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2.3.5 Supervised Machine Learning 

Supervised machine learning aims to map an input to an output based on example of 

input-output pairs including process uncertainty. Simulation of drainage in 8 soils combined to 

7 weather scenarios and four cropping scenarios (BS, G30, 60 & 90) will result in 2688 number 

of monthly drainage values. Considering drainage related to reference evapotranspiration in 

bare soil and to transpiration in the grass scenarios, precipitation and the SDI of the soil, then 

the monthly drainage rate could be predicted through machine learning methods. For this 

purpose, parametric techniques including linear model (LM) and stepwise linear model 

(SWLM) in addition to nonparametric methods such as support vector machines (SVMs), 

Gaussian process regression (GPR), ensemble method (ENS) are utilized. 

Parametric supervised machine learning optimizes the parameters of an a priori 

known learning function (f(.)) in equation 2.6 to achieve the best fit to data by minimizing the 

sum of squared errors (SSE). 

𝑦(𝑋𝑖) = 𝑓(𝑋𝑖) + 𝜀𝑖 = 𝐵𝑖𝑎𝑠 + ∑ 𝑋𝑖𝑘
𝑇 𝑤𝑘

𝑘

𝑘=1

+ 𝜀𝑖                 𝑖

= 1,2, … , 𝑛 

(2.6) 

where 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘 ) is the coefficient vector of parameters to be estimated, 𝑋𝑖𝑘
𝑇  is the 

transpose of the variable vector for k variables, and ε is the error, with zero mean, normally and 

independently distributed with constant variance of σ2. f(.), or the learning function is an a priori 

specified model in parametric supervised methods (KOTLAR; IVERSEN; DE JONG VAN 

LIER, 2019).  

In nonparametric regression, any number of latent functions f(.) in (2.6) for each pair of 

data can be generated and left unspecified, but these functions should be smooth and flexible. 

It means a particular subset of random latent functions f={f1, … , fn} corresponds to input  

f={X1, … , Xn}. In Gaussian process regressions, it is a prior assumed that all f(.) own a normal 

distribution looking like f(X)~GP(𝑓,̅cov(f)), where 𝑓 ̅ is the mean and cov(f) is covariance or 

kernel function. 

Therefore, proper selection of kernel or covariance function is an important task since 

they determine the sample properties such as smoothness, length scale and amplitude, which 

are drawn from the GP to give a precise prediction for responses with inputs, which are close 
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to trained data points in training stage. For example, equation (2.7) is a squared exponential 

kernel function which is used in this study for GPR named GPR-SE. 

𝑘((𝑥𝑖, 𝑥𝑗) = 𝜎𝑓
2𝑒𝑥𝑝 [−

1

2

(𝑥𝑖 − 𝑥𝑗)
𝑇

(𝑥𝑖 − 𝑥𝑗)

𝜎𝑙
2

] (2.6) 

 

where amplitude σf , the characteristic length scale σl are kernel (hyper) parameters.  

A Support Vector Machine (SVM) also maps output from a labelled training input-

output dataset. The input data through kernel functions are projected into a higher dimensional 

space called feature space to find the output (y=f(x,w)+noise) via f(x,w)=w.φ(Xi) +b where 

φ(Xi) is the projected input data into feature space, w and b are weight vector parameter and 

bias of the searched regression function. The SVR function can be obtained as: 

𝑓(𝑥𝑖) = ∑(𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝑥𝑖,𝑥)

𝑛

𝑖=1

+ 𝑏 (2.7) 

 

These Lagrange multipliers (α and α*) are support vectors and different Gaussian, linear 

and second order polynomial kernel functions 𝑘(𝑥𝑖,𝑥) = 𝑒𝑥𝑝 (−
||𝑥𝑖−𝑥||

2

2𝜎2 ), 𝑘(𝑥𝑖,𝑥) = 𝑥𝑖𝑥, 

𝑘(𝑥𝑖,𝑥) = (1 + (𝑥𝑖𝑥)2) were selected to for SVMs. 

Algorithms such as bootstrap aggregation (Bagging) proposed by Breiman (1996) or 

least squares boosting (LSboost) are the most commonly techniques used for ensemble learning 

regressions. Regression ensembles include many weak learners predicts the output via two 

algorithms Bagging or LSboost called ENS-B and ENS-L. A detailed explanation regarding 

machine learning methods used in this study can be found in (KOTLAR; IVERSEN; DE JONG 

VAN LIER, 2019).  

To examine the effect of SDI on simulation of monthly drainage, two scenarios 

including predictors include SDI and without SDI (SDI, no SDI) were performed under the 

seven weather scenarios by machine learning algorithms. 70% of data were randomly chosen 

for training the model and the remaining unseen data verified the MLTs in the testing stage. 
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2.4. Results 

2.4.1 Climatic Data and Calibration of LARS-WG 

 

As wind speed is not a generated weather data by LARS-WG, using the Penman-

Monteith equation (2.1) for prediction of ET0P is not feasible, and equation (2.2) was used 

instead to predict ET0H. However, without calibration of this equation, on average, ET0H is 

7.95±3.75% larger than the ET0P except in August, September and October when it is about 

1.8% smaller. After calibration, the coefficient in equation (2.2) is needed to change to 0.01266 

where ET0H is only 2.9±2.04% greater than ET0P for the first half of year and for the second 

half of year ET0P is 5.10±3.52% is larger than ET0H, as shown in Figure 2.1.a. In general, the 

RMSE between ET0H and ET0P reduced from 0.60 to 0.54 mm d-1 after calibration. Figure 2.2.b 

also provides the observed values of monthly maximum and minimum temperature and solar 

radiation from 38 years of measured data.  

  

Figure 2.2. Average monthly ET0 predicted by the calibrated Hargraves equation - ET0H and the 

Penman- Monteith equation - ET0P, Precipitation (P) (a) and maximum, minimum 

temperature (Tmax & Tmin) and Solar Radiation (Rs) (b) for the University of São Paulo 

weather station in Piracicaba (SP), Brazil. 

For calibration of LARS-WG, observed data from 1978-2015 were compared to 

simulated data by LARS-WG through baseline climate scenario. Monthly values of rainfall and 

reference evapotranspiration calculated using the Hargraves equation (2.2), as well as average 

temperature and solar radiation are simulated closely to observed values with R2 more than 98% 

for all cases) (Figure 2.3.a).  
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Figure 2.3. Observed meteorological data versus simulated ones by LARS-WG: Left: Rainfall (P) and 

Evapotranspiration (ET0); Right: Radiation (Ra) and Average Temperature (Tave)  

In order to determine if the seasonal wet/dry series and the meteorological variables 

have a high probability of belonging to the same distribution as the observed data, the 

calibration was also verified by the Kolmogorov–Smirnov test close to 0 and p-values close to 

1 for all cases (data not shown). For the assessment of drainage or plant water availability 

studies, the concept of wet and dry spell length (WSL or DSL) in weather data plays an 

important role. WSL and DSL were well simulated with high correlations (Figure 2.4.a), 

showing an excellent ability in proper weather data generation. 

  

Figure 2.4. Monthly observed and generated Dry and Wet Spell Length (DSL & WSL) (a) and 

Correlation of observed and generated DSL and WSL (b) 

2.4.2 Simulations with the bare soil scenario 

 

Figure 2.5 shows monthly drainage and evaporation with respective standard deviation 

versus rainfall evaluated from bare soil (BS) simulations using the 38 years of meteorological 

data for all eight soils (A to H). Higher drainage occurs in the rainy months October to March. 
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Monthly average of rainfall (10.6±6cm) shows larger standard deviation in drier- than in rainy-

months. This is attributed to drainage and evaporation in bare soil with standard deviations of 

about 10 to 20% of the average value in rainy months versus 20-30% in dry months  

(Figure 2.5). 

 
Figure 2.5. Monthly drainage, evaporation and rainfall, averages and standard deviations for all soils 

under the bare soil (BS) scenario 

 

Regarding soil types, Figure 2.6 shows the SDI of each soil profile (A-H) calculated by 

equation (2.7) assuming two different pressure head criteria -1 and -3 cm. Resulting values are 

plotted against the average annual drainage predicted from respective bare soil profiles by the 

Hydrus simulations. The average annual precipitation for this 38-year series of weather data 

results in very close or more than 80 cm per year of drainage in bare soils E, G, A and B, 

decreasing to just above 55 cm in soil C. Standard deviations among years were close to 20 cm 

for all soils. This allows concluding that under this climate, differences in soil hydraulic 

properties among soils may lead to a variation in bare soil drainage partitioning of the order of 

40 to 70% of the average annual rainfall.  

Furthermore, Figure 2.6 shows an excellent correlation between SDI and annual 

drainage for both values of hns, with R2 around 0.9. This small changes near saturation matric 

potential is usually associated with great different in hydraulic conductivity while considering 

hns equal to zero matric potential (h0=hs) results in a very weak correlation (R2=0.42)  

between SDI and annual drainage. This shows a good performance of SDI as predictor of annual 

drainage, even though for soils with lower SDI, around 0.2, there is less strong correlation.  

 

0

10

20

30

40

50

60

70

80

90

100

110

1200

2

4

6

8

10

12

14

16

18

20

22

24

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

A
x

is
 T

it
le

E
v
a

p
o

r
a

ti
o

n
 o

r
 D

r
a

in
a

g
e
 (

c
m

)

+σ

-σ

P
r
e
c
ip

ita
tio

n
 (c

m
)



39 

Considering hns = -3 cm, the correlation coefficient is slightly higher than for hns = -1 cm  

(0.93 versus 0.88). Therefore, this near saturation-based index seems a good indicator of 

drainability, requiring the knowledge of water content at a fixed pressure head and the 

corresponding relative hydraulic conductivity.  

 
Figure 2.6. Soil Drainage Index (SDI) of each soil (A to H) calculated using hns = -1 cm or hns = -3 cm 

versus the average annual drainage under the bare soil (BS) scenario 

From Figure 2.7 it is obvious that all the machine learning based models perform better 

when SDI is used among predictors. It can be inferred that including SDI in the model was less 

effective for SVM-L and SVM-P, showing a drop of 17 and 18% in RMSE and an increase of 

about 4% in R2 compared to the simulations with the same algorithms but without SDI.  

The equations for prediction of monthly drainage prediction (D) using LM and SWLM 

are brought for both SDI and no-SDI scenarios as 𝐷𝐿𝑀
𝑛𝑜−𝑆𝐷𝐼,𝐷𝑆𝑊𝐿𝑀

𝑛𝑜−𝑆𝐷𝐼, 𝐷𝐿𝑀
𝑆𝐷𝐼 

and 𝐷𝑆𝑊𝐿𝑀
𝑆𝐷𝐼.  There is no interaction between ET0 and P which makes the obtained equation 

in order to predict monthly drainage for SWLM to be the same as for LM in no-SDI scenarios. 

However, introducing SDI forms interactions with P and ET0 to improve the model 

performance, as this better performance is also clear in Figure 2.7 where RMSE lessens from 

1.427 for equation (2.11) to 1.148 and 1.137 cm month-1 for equation (2.12) and equation (2.13) 

respectively. These equations are as follows: 
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𝐷𝐿𝑀
𝑛𝑜−𝑆𝐷𝐼 = 𝐷𝑆𝑊𝐿𝑀

𝑛𝑜−𝑆𝐷𝐼 = 1.808 + 0.676𝑃 − 0.277𝐸𝑇0 (2.9) 

𝐷𝐿𝑀
𝑆𝐷𝐼 = −1.793 + 0.671𝑃 − 0.259𝐸𝑇0 + 13.847𝑆𝐷𝐼 (2.10) 

𝐷𝑆𝑊𝐿𝑀
𝑆𝐷𝐼 = 1.249 + 0.366𝑃 − 0.355𝐸𝑇0 + 5.828𝑆𝐷𝐼 + 0.010𝑃 × 𝐸𝑇0 + 0.739𝑃 × 𝑆𝐷𝐼 (2.11) 

 

The units are cm month-1 for D, P and ET0. Ensemble regression ENS-LB gives the best 

fit in SDI and no SDI scenarios. In the model with SDI as the third predictor, R2 of 0.983 and 

an RMSE of 0.492 cm month-1 are obtained in the testing stage, which means prediction of 

drainage is much more reliable in drier months with monthly drainage between 2 to 5 cm. This 

is expected since the incorporation of weak learners in an ensemble method makes estimations 

less likely to be biased (MØLLER et al., 2018). 

Considering bagging and boosting algorithms in this study are based on decision tree 

learners, SDI parameter could enhance the decision-making capability of the ensemble model, 

especially when there is a strong relation between drainage and SDI as shown in Figure 2.6. 

Superiority of ENS-LB compared to ENS-B is due to this fact that at every step, the ensemble 

fits a new learner to the difference between the observed drainage and the aggregated prediction 

of all learners grown previously. Among kernel-based algorithms including SVMs and GPR, 

the latter shows better results with an R2 of 0.946 and RMSE of 0.899 cm month-1 for the model 

with SDI. However, in no-SDI, this accuracy decreased by 0.062 in R2 and 0.421 cm month-1 

in RMSE. SVM-G with an RMSE of 1.100 cm month-1 is slightly better than other SVMs for 

prediction of annual drainage again where SDI is considered as an input. 

   

Figure 2.7. Performance of proposed models (RMSE and R2) for prediction of bare soil drainage 
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2.4.3 Simulations with grass-covered lands (pasture) 

The presence of a vegetation cover reduces bottom drainage due to root water uptake, 

but the intensity of this drainage reduction depends on the hydraulic properties of soil layers 

and rooting depth and distribution. To illustrate this, Figure 2.8 shows monthly average 

drainage and evapotranspiration from soils covered with grass with three rooting depths (30, 60 

and 90 cm, scenarios G30, G60, and G90) together with the values (drainage and evaporation) 

for BS. Comparing BS to the grass scenarios, monthly drainage was reduced by 30 to 50% with 

G30, G60 and G90 scenarios.  

 

Figure 2.8. Monthly average of drainage and evapotranspiration using real climatic data for 8 soils 

under BS, G30, G60 and G90 scenarios 

Figure 2.8 also gives the details and comparisons of evapotranspiration (ET) due to 

climatic conditions under all grass types simulations and evaporation from bare soil.  

ET increases from G30 to G60 to G90, but the increase between G30 and G60 is higher than 

between G60 and G90. This shows that increasing rooting depth beyond a certain depth leads 

to a very modest increase in transpiration, as also confirmed by the data in Table 2.2. This depth 

then corresponds to an available water content capable of maintaining potential transpiration 

for most of the occurring weather conditions. 

Seasonally speaking, actual transpiration in rainy months is just above twice that of dry 

months because of the higher amount of available water in the root zone. Averaging between 

G30, G60 and G90, 5.6 (±2.4) cm month-1 of transpiration results from 7.7 (±0.9) cm 

(corresponding to 68% of total Ta) transpiration in rainy months and 3.6 (±1.1) cm (32%) in the 
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dry months, from April to September. The seasonal dependency of transpiration demonstrates 

the typical response to atmospheric demand and soil moisture supply on grass. Higher rainfall 

amounts return to the atmosphere at maximum rates by evapotranspiration. In dry months with 

a higher vapor pressure deficit, atmospheric demand increases but transpiration is less due to 

limiting soil water supply. 

Table 2.2. Monthly averages (and, between brackets, standard deviations) of actual transpiration (Ta), 

Drainage (D) and Evaporation (Ev), all in cm month-1, for G30, G60 and G90 scenarios in the wet 

(October to March) and dry season (April to September) 

Scenario Ta D Ev 

Season Wet  Dry  Wet  Dry  Wet  Dry  

G30 7.2(±0.9) 3.2(±1.0) 6.6 (±3.0) 1.7(±1.0) 1.7(±1.2) 0.7(±0.25) 

G60 7.8(±0.95) 3.6(±1.2) 5.7(±1.0) 1.3(±0.9) 1.85(±1.3) 0.75(±0.23) 

G90 8.1 (±1.0) 3.9(±1.2) 5.3(±3.0) 1.1(±0.8) 1.9(±1.35) 0.8(±0.23) 

 

Overall, predicted evapotranspiration for these scenarios ranges from 761 and 844 to 

886 mm y-1 (standard deviations around 35 mm y-1) for G30, G60 and G90. The observed 

reduction of evapotranspiration when rooting depth is shallower allows to understand the effect 

of conversion of deeply rooted crops to shallow rooted ones or land cover change as results, for 

example, from deforestation. 

The ratio of actual to potential ET for different grass scenarios as in Figure 2.9 shows 

that rainfed crops are under frequent drought stress, even in the wetter months, and irrigation 

could improve crop yield and subsequently water use efficiency. The use of a fixed and constant 

LAI of 2.88 results in equal potential evapotranspiration predictions for G30, G60 and G90, 

and increasing the rooting depth from 30 to 60 cm allows increasing ETa by about 10%. In the 

case of endoalic soils, common in Precambrian surfaces under a tropical humid climate, an 

increase of rooting depth can be sometimes accomplished by increasing soil pH using chalk, 

thus decreasing soluble aluminum contents.  
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Figure 2.9. Ratio of actual to potential evapotranspiration for three grass scenarios, average monthly 

values from all soils. 

Similar to the procedure for the prediction of drainage from a bare soil profile, drainage 

prediction from grass covered lands (G30, G60 & G90) was performed by machine learning 

methods, replacing ET0 by the actual transpiration of grass (Tp) obtained by simulation with the 

Richards equation under different atmospheric boundary conditions. The values of RMSE and 

R2 for all algorithms are shown in 2.10. In the bare soil scenario, there is no trace of soil effect 

if SDI is not considered and the system would be only plant atmosphere, however, in the grass-

based scenarios, Hydrus obtains plant transpiration through numerical simulation, recalling 

equation (2.5), where the hydraulic parameters of the soil affect the value of Tp in different 

times and different soils. In this way, SDI addition can be the soil representative in the grass 

scenario besides Tp and the system even without SDI is soil-plant atmosphere. Therefore, for 

machine learning methods the introduction of SDI to predict drainage for grass-based scenarios 

should not be the same as it was for bare soil. 

Plant participation intensively affects the accuracy of parametric models, where RMSE 

of LM and SWLM on testing data increased by 20.7 and 21.21% in the model with SDI. These 

models are shown in equations (2.14), (2.15), (2.16) and (2.17) with and without SDI.  

DLM
no−SDI = −0.560 + 0.564P − 0.343Tp (2.12) 

DswLM
no−SDI = 314 + 0.438P − 0.483Tp + 0.01P × Tp (2.13) 
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DLM
SDI = −1.233 + 0.5641P − 0.335Tp + 2.651SDI (2.14) 

DSWLM
SDI = −0.356 + 0.433P − 0.478Tp + 2.709SDI + 0.017P × Tp (2.15) 

 

As already mentioned, SDI engagement in the model did not make a significant 

difference in better prediction of drainage as clear from comparison of Figure 2.7 and Figure 

2.10, except for ENS-BL. For this algorithm, RMSE of predicted and observed values for 

testing dataset decreased from 0.629 to 0.448 cm month-1. 

 

  

Figure 2.10. Performance of proposed models (RMSE and R2) for prediction of grass covered soil 

drainage 

2.5 Discussion 

 

In present work a new index to approximate annual drainage from a layered soil under 

no cropping was proposed. To the best of our knowledge there is no study focusing on simple 

methods to estimate drainage in tropical soils and only few studies are available for 

measurement of drainage flux. The main hypothesis was to relate the drainage under 

atmospheric boundary condition with hydraulic properties of the soil. This link was made by 

the soil drainabilty index (SDI) composed of near saturated (e.g. at - 1 and -3 cm) and saturated 

hydraulic conductivities beside saturated water content of every single layer. The index requires 

fewer parameters to estimate annual drainage compared to typical modelling and experimental 

methods. However, the SDI concept needs more verification through experimental data, not 

easily available for most scenarios.  
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We found that any prediction of rainfall dependent problems will be less precise in the 

drier months. The eight analysed soil types drained 56.5% (±9%) of monthly rainfall if left bare, 

whereas the remaining portion of the water budget was lost via evaporation. Thus 40 to 70% of 

the average annual rainfall could be lost due to bottom drainage from bare soils similar to the 

results reported in (FARIA; BOWEN, 2003) where drainage could be 35% of precipitation in 

bare soils with a clayey texture. In a modelling study (OLIVEIRA et al., 2015), authors showed 

65% of precipitation during 1961-1990 to be drained from a bare Cambisol as well. 

Deep drainage may be a water saving measure in groundwater irrigation; nevertheless, 

it accounts for non-productive loss of water in deep groundwater scenarios, common in most 

soils in Brazil. Under these conditions, higher drainage results in lower transpiration and 

reduced biomass production. Intensive fertilization may pose a serious risk of groundwater 

contamination because of drainage and leaching. 

Moreover, having a single soil hydraulic related parameter such SDI representing soil 

profile role in water flow could be used as a single predictor besides atmospheric and plant 

related parameters to predict fluxes such as drainage. SDI engagement ameliorated the 

performance of parametric machine learning models (linear and stepwise model) by about 20% 

in terms of RMSE, though RMSE of 0.492 cm month-1 proved the robust method of ensemble 

for prediction of drainage with SDI.  

Simulated bottom drainage for grass covered scenarios with rooting depth of 30, 60 and 

90 cm was 501 ± 40.3, 420 ± 31.5 and 382 ± 30.8 mm y-1, respectively, within the range 

between 145-703 mm y-1 reported for recharge rate data in grass cultivated lands in (OLIVEIRA 

et al., 2015). Referring to land use change in Brazil, one could consider the effect of a change 

from native vegetation with more than 90 cm root depth such as savannah to a shallower rooted 

grass for grazing purposes, resulting in a 25% of drainage increase and more non-productive 

loss of water according to our simulations. There is on average 40% reduction in monthly 

drainage due to plantation. 

Comparing the simulated ET of 3.2 ± 0.4 mm d-1 for rainy months and 1.4 ±  

0.45 mm d-1 for dry months for all grass covered scenarios, regardless of root depth, to 

measured values, good agreement is found. Using remote sensing techniques, Andrade et al. 

(2014) measured evapotranspiration in grass cover areas of Brazil to be less than 1.5 mm d-1 

between May and October. Feltrin et al., (2017) used lysimeters and recorded 2.95 mm d-1 of 

evapotranspiration in a grass covered location in Rio Grande do Sul State, Brazil.  
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The value of 2.25-2.43 mm d-1 was reported from a macroscale analysis for Mato Grosso State, 

Brazil (LATHUILLIÈRE; JOHNSON; DONNER, 2012). 

Considering a leaf area index (LAI) between 0.4 and 1.1 resulted in a measured ET of 

2.6 ± 0.9 mm d-1 for grass cultivated in the cerrado biome of central Brazil (MEIRELLES et 

al., 2011). However, a LAI of 3.2 (close to our assumption of LAI 2.88) for an ungrazed 

Brachiaria pasture in central Brazil increased calculated ET to 3.4 mm d-1 (SANTOS et al., 

2004). High infiltration rate of very sandy soils with grass cultivation in the study by Nóbrega 

et al. (2017) resulted in 1.19 ± 0.52 mm d-1 and 2.15 ± 0.58 mm d-1 evapotranspiration in the 

Cerrado. The reported value of evapotranspiration for wet months in our study is within the 

comprehensive finding of 3-4 mm d-1 as reported in (SANCHES et al., 2011) for grass 

cultivation in a tropical condition. We did not observe significant improvement in prediction of 

drainage by incorporation of SDI factor in machine learning models, although it was expected 

because the Tp factor carries the role of soil profile behavior hence SDI does not seem to be 

influential.   

 

2.6 Conclusions 

 

A soil drainability index (SDI) is defined in order to predict the annual drainage from 

bare soils and grass cultivated soil. Fewer parameters are required to estimate annual drainage 

based on SDI compared to typical modelling and experimental methods. When SDI is used as 

a predictor for monthly drainage from bare soils using machine-learning models, performance 

of these models improved significantly. The introduction of SDI for drainage prediction from 

planted soils enhanced the robustness of models but less than bare soil. Among machine 

learning methods, ensemble regression with least squares boosting aggregation algorithm 

predicted monthly drainage better than Gaussian process regression and support vector 

machines. The RMSE values for testing data in bare soil scenarios were low, around 1.2 cm 

month-1. In grass-cropped scenarios, the accuracy of the models was lower, with RMSE up to 

about 1.5 cm month-1, probably due to errors associated to the prediction of actual crop 

transpiration. 
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3 Soil Hydraulic Properties Determined by Inverse Modeling of Drip Infiltrometer 

Experiments Extended with Pedotransfer Functions2 

 

Abstract 

 

A transient flow experiment using automated drip infiltrometers (ADIs) was performed on soil columns 

(about 6 dm3) large enough to incorporate macropore flow effects. We investigated to what extent the 

estimated soil hydraulic parameters obtained from inverse modeling of these experiments are reliable. 

A machine learning based pedotransfer function (PTF) for prediction of water content at −1, −10, and 

−158 m pressure head was developed. Sensitivity analysis of the van Genuchten parameters (residual 

and saturated water content r and s, fitting parameters , n, and , and saturated hydraulic conductivity 

Ks) in soils of sandy, silty, and clayey textures showed that the temporal variation of pressure heads in 

ADI scenarios was not sensitive to r and s. The other parameters were accurately estimated from 

numerically synthesized data. The uniqueness of the estimated parameters did not change when a bias, 

representing experimental error, was added to the data set. In actual columns, using the temporal and 

spatial pressure head data from the ADIs and the water contents in the drier range predicted by the 

developed PTF resulted in a precise estimation of the van Genuchten parameters. Not including the PTF 

water contents resulted in non-uniquely estimated van Genuchten parameters. 

Keywords: Hydraulic conductivity function, Gaussian process regression, Inverse modelling, 

HYDRUS 1D, Drip infiltrometer. 

  

                                                           
2 Kotlar, A.M., Varvaris, I., De Jong van Lier, Q., De Jong, L.W., Møldrup, P., Iversen, B.V. Soil Hydraulic 

Properties Determined by Inverse Modeling of Drip Infiltrometer Experiments Extended with Pedotransfer 

Functions. Vadose Zone Journal, 18 (1), 2019. DOI: 10.2136/vzj2018.12.0215. 
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3.1 Introduction  

 

The accurate modeling of water flow and budgeting of solute and heat transport in the 

vadose zone based on a numerical solution of the Richards equation depends on precise 

knowledge of the fundamental soil hydraulic properties (SHPs): water retention [(h)] and 

hydraulic conductivity [K(h)] (GROH et al., 2018; WENINGER et al., 2018). Direct 

measurement of K(h) is laborious, therefore K(h) is most commonly indirectly derived by using 

the measured saturated hydraulic conductivity, the (h) function, and an empirical parameter 

related to tortuosity and connectivity, which, in its turn, exhibits a very large spatial variability 

(DURNER et al., 1999). Consequently, any method to directly quantify K(h) represents an 

improvement of modeling quality, but this is predominantly neglected (WENINGER et al., 

2018; WELLER et al., 2011). 

Both soil heterogeneity at different scales, from millimeters to kilometers, and the large 

amount of required data restrict the use of pedotransfer functions for the determination of SHPs 

and especially the soil water retention function [(h)] (GRAHAM et al., 2018). Methods to 

measure SHPs, including pressure plates and in situ techniques like internal drainage 

experiments, are commonly laborious and costly. Most of these methods are inadequate to 

describe water dynamics at larger scales because they require hydraulic equilibrium, restricting 

experiments to small sample sizes (SCHARNAGL et al., 2011). A proper and real estimation 

of SHPs requires experiments performed on sample sizes larger than the representative 

elementary volume under transient water flow conditions. Subsequent inverse modeling of the 

observed data allows hydraulic properties to be effectively lumped for the scale of interest 

(HOPMANS; NIELSEN; BRISTOW, 2002; MALLANTS et al., 1997; PACHEPSKY; HILL, 

2017). 

Numerical methods to inversely model transient flow methods under diverse boundary 

conditions have recently gained considerable attention (LI et al., 2018; RASHID et al., 2015; 

ARORA; MOHANTY; MCGUIRE, 2011). In the upward infiltration method, a constant 

upward flux from the bottom is established as a boundary condition to obtain SHPs in the 

wetting branch. This method was proposed by Hudson et al. (1996) and modified through an 

applied constant bottom suction, allowing the cumulative flux data to be included as an 

auxiliary variable in the objective function (YOUNG et al., 2002). The latest improvement in 

the upward infiltration method was to impose multiple tensions at the lower boundary 
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(MORET-FERNÁNDEZ et al., 2016) and estimate SHPs without using tensiometers but small 

ring soil cores (100 cm3). 

Another boundary condition is established in evaporation scenarios, initially proposed 

on horizontal (GARDNER; MIKLICH, 1962) and vertical columns (WIND, 1969) and now 

frequently used for the simultaneous determination of retention and conductivity functions 

(SIMUNEK; VAN GENUCHTEN; WENDROTH, 1998; ROMANO; SANTINI, 1999; 

SCHELLE; IDEN; DURNER, 2011). These methods tend to fail in providing conductivities 

under near-saturated conditions. 

Outflow experiments inversely model the measured outflow of water from a soil sample 

under established pressure or suction conditions. For instance, inverse modeling of one-step 

outflow experiments (KOOL; PARKER; VAN GENUCHTEN, 1985) supplied with further 

information of water content (VAN DAM et al., 1992) was improved by multistep outflow 

experiments (VAN DAM; STRICKER; DROOGERS, 1994). 

Similar to outflow experiments, a group of methods is based on the crust method 

(BOUMA and BAKER, 1974), in which vertical flow is established under a gravitational 

gradient alone, without a pressure head gradient. As an alternative to the original crust method, 

which requires a semi-infinite soil column, automated drip infiltrometers (IVERSEN; 

KOPPELGAARD; JACOBSON, 2004) allow similar boundary conditions in a finite geometry. 

In automatic drip infiltrometer (ADI) experiments, data on K(h) can be obtained for the wet 

range. The extension of these pressure head data with information on water content may 

improve the well-posedness of the inverse modeling problem (ZHANG; WARD; GEE, 2003). 

The objective of this study was to analyze ADI experimental data using inverse modeling 

techniques and to investigate if the extension of retention data to the drier range using prediction 

by a Gaussian process regression pedotransfer function trained on a local data set may result in 

a better assessment of SHPs. 

 

3.2 Materials and Methods 

3.2.1 Sampling and experimental set up 

Fifteen undisturbed soil columns (20 cm high and 20 cm in diameter, volume 6.283 dm3) 

were sampled from the top layer of an experimental field located in Lund, Denmark 

(coordinates 55.24 N, 12.29 E), which belongs to the Danish Pesticide Leaching Assessment 



53 

Program (LINDHARDT et al., 2001). The soil has a sandy loam texture (64% sand, 23% silt, 

and 13% clay, organic matter content 2.5%) (KOTLAR; IVERSEN; DE JONG VAN LIER., 

2019a). Winter wheat was cultivated at the location during the 5 yr before sampling. In the 

same field, small ring samples (100 cm3) were taken for water retention analysis using a sand 

box for pressure heads from −0.1 to −1 m and ceramic plate equipment for pressure heads 

between −1.6 and −150 m. Water content for the very dry soil was determined after one night 

of oven drying using a WP4-T dew point potentiometer (METER Group). 

Analogous to the studies of Mckenzie et al. (2001) and Weller et al. (2011), unsaturated 

hydraulic conductivity was measured using automated (step flow) drip infiltrometers (Figure 

3.1) as reported by Iversen, Koppelgaard and Jacobson (2004). In the ADI setup, tensiometers 

recorded pressure heads at five depths in the column under step flow. A suction was applied at 

the bottom of the sample, and the inflow was adjusted until a steady state was established in 

which the five tensiometers showed similar readings and flow was due to a gravitational 

gradient only. Subsequently, suction was increased and the process repeated. Five to eight 

bottom suctions were applied, varying between −0.1 to −1 m pressure head, allowing 

determination of K(h) in this range of pressure heads. Saturated hydraulic conductivity was 

independently measured using the constant-head method as described by Iversen et al. (2004). 

 

Figure 3.1. Schematic design of the Automatic Drip Infiltrometer (ADI) apparatus for measuring 

unsaturated hydraulic conductivity 
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3.2.2 Generation of Synthetic Data 

To evaluate the reliability of the SHPs estimated by inverse modeling of ADI scenarios, 

ADI experiments similar to the experimental setup were simulated numerically by HYDRUS-

1D for three reference soils used by Vrugt et al. (2001) (Table 3.1). 

The HYDRUS-1D model numerically simulates the temporal and spatial changes in 

water content or pressure head by solving the Richards’ equation (SIMUNEK et al., 2008): 

∂θ

∂t
=

∂

∂z
[k(h)

∂h

∂z
+ k(h)] (3.1) 

 

where  is the volumetric soil water content, t is time (d), z is the vertical space coordinate (cm), 

K is the hydraulic conductivity (cm d−1), and h is pressure head (cm). The soil hydraulic 

properties were modeled using the van Genuchten–Mualem constitutive relationships (VAN 

GENUCHTEN, 1980): 

𝑆𝑒(h) =
θ(h)−𝜃𝑟

𝜃𝑠−𝜃𝑟
= (1 + |𝛼ℎ|𝑛)−𝑚 (3.2) 

𝐾(h) = 𝐾𝑠𝑆𝑒
𝜆[1 − (1 − S𝑒

1/𝑚
)𝑚]2 (3.3) 

where Se is the saturation degree, s and r are volumetric saturated and residual water contents, 

and  (cm−1), m = 1 − 1/n, and  are fitting parameters. 

The simulated scenarios were chosen to represent the ADI experiment in 20-cm-high 

soil columns with three tensiometers (at depths of 7, 10, and 13 cm), discretized into 100 

elements. A finer grid size was chosen near the virtual tensiometers. At the bottom of the soil 

column, a 1-cm-thick porous plate with Ks equal to 2.7 cm d−1 was simulated with van 

Genuchten (1980) parameters n = 1.001 and  = 10−20 cm−1, thus ensuring that it remained fully 

saturated for the pressure heads applied (SIMUNEK et al., 2008). Boundary conditions were 

multistep flux [always less than K (−1 cm)] and zero evaporation. The bottom boundary 

condition was a stepwise varying pressure head, never lower than −100 cm. 
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3.2.3 Sensitivity Analysis 

To study the parameter sensitivity of the described ADI scenario and to evaluate if 

insensitive parameters might be removed (RITTER et al., 2003; LAMBOT et al., 2004), one-

parameter analyses as well as two-parameter analyses were performed using the same scenarios 

described for synthetic data generation. In the one-parameter analysis, 100 forward simulations 

(Monte Carlo) were performed by changing one of the parameters r, s, , n, , or Ks within 

an interval around the respective true value. Similarly, in the two-parameter analysis, parameter 

pairs –n, –Ks, –, n–Ks and n– were simultaneously changed, resulting in 100  100 = 

10,000 realizations. The two-parameter analyses allowed assessment of the corresponding 

response surfaces. In both one- and two-parameter analyses, the remaining parameters were 

kept at their true value. 

 

Table 3.1. Soil hydraulic parameters for reference soils (extracted from Vrugt et al., 2001). Values 

between brackets represent the range of values used in 1-D and 2-D Monte Carlo realizations 

texture 
VG parameters† 

θr θs α (cm-1) n Ks (cm d-1) λ 

Sand 
0.02 

(0-0.07) 

0.38 

(0.3-0.5) 

0.0214 

(0.001-0.03) 

2.075 

(1.4-3.0) 

15.56 

(7-50) 

0.039 

(-3-3) 

Silt 
0.034 

(0-0.1) 

0.46 

(0.3-0.5) 

0.0160 

(0.001-0.04) 

1.370 

(1.2-1.9) 

6.00 

(4-25) 

0.5 

(-3-3) 

Clay 
0.00 

(0-0.1) 

0.42 

(0.3-0.5) 

0.0191 

(0.009-0.09) 

1.152 

(1.1-2.5) 

13.80 

(7.5-35) 

-1.384 

(-3-3) 

† θr, residual volumetric water content; θs, saturated volumetric water content;  α, n and λ: 

fitting parameters; Ks, saturated hydraulic conductivity 

 

Two statistical indicators were used to compare the Monte Carlo realizations of 

simulated pressure head readings (hsim) with the pressure heads simulated with the reference 

values (href): the root mean square error (RMSE) and the Nash–Sutcliffe efficiency (NSE): 

𝑅𝑀𝑆𝐸 = √
∑ (ℎ𝑠𝑖𝑚 − ℎ𝑟𝑒𝑓)2𝑠

𝑖=1

𝑠 − 1
 (3.4) 
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𝑁𝑆𝐸 = 1 −
∑ (ℎ𝑠𝑖𝑚 − ℎ𝑟𝑒𝑓)2𝑠

𝑖=1

∑ (ℎ𝑟𝑒𝑓 − ℎ𝑟𝑒𝑓
̅̅ ̅̅ ̅̅ )2𝑠

𝑖=1

 (3.5) 

 

3.2.4 Inverse Modeling 

The inverse modeling to obtain the SHP functions (h) and K(h) aimed to minimize the 

following objective function F(): 

𝐹(𝜙) = ∑ ∑ {[𝜙𝑘
𝑜𝑏𝑠(𝑧𝑗, 𝑡𝑖) − 𝜙𝑘

𝑠𝑖𝑚(𝑧𝑗, 𝑡𝑖)]
2

}

𝑛

𝑖=1

𝑝

𝑗=1

 (3.6) 

where k
obs and k

sim are the observed and simulated values, respectively, of a target parameter 

(e.g., pressure head) at depth zj and time ti. Minimization of the objective function was 

performed using HYDRUS-1D (SIMUNEK et al., 2008). HYDRUS-1D uses the Levenberg–

Marquardt non-linear minimization method, a local gradient-type search algorithm, as opposed 

to global search algorithms that search the entire parameter space. Local search algorithms are 

generally sensitive to the initial parameter estimates (SIMUNEK et al., 2005; KELLENERS et 

al., 2005). 

To reduce the number of parameters to be estimated by inverse modeling, parameters r 

and s were fixed at experimentally observed values. Saturated water content was calculated 

based on bulk density and particle density (2650 kg m−3). Estimated water content at pF = 5 

using a WP4 psychrometric tensiometer was used as the residual water content. A stochastic 

bias was introduced, applying a 1-cm noise to the observed pressure heads to evaluate the 

sensitivity to experimental errors (KOOL; PARKER, 1988; PETERS; DURNER, 2008). 

In this study, two sets of data were used in inverse modeling to estimate the SHPs: (i) 

the traditional ADI data set consisting of measured pressure head data from the three most 

central tensiometers (eliminating the top and bottom tensiometers, thus avoiding possible 

boundary disturbance); and (ii) the ADI data set consisting of measured pressure head data from 

the three most central tensiometers extended with water contents predicted by a pedotransfer 

function. 
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The testing of inverse modeling and obtained parameters was accomplished by 

comparison of K(h) observed in ADI experiments and simulated by estimated parameters using 

the RMSE and the mean square percentage error (MSPE): 

𝑀𝑆𝑃𝐸 =
100%

𝑛
∑ [

𝐾𝑠𝑖𝑚,𝑖 − 𝐾𝑜𝑏𝑠,𝑖

𝐾𝑜𝑏𝑠,𝑖
]

2𝑛

𝑖=1

 (3.7) 

where Kobs,i is the ith hydraulic conductivity measured in the ADI experiment, Ksim,i is the 

corresponding K(h) calculated using parameters obtained by inverse modeling, and n is the 

number of observations. For the cases where water contents predicted by PTF and simulated 

ones obtained from the van Genuchten parameters or the measured ones from small rings were 

compared with each other, the RMSE was the evaluation criterion. 

 

3.2.5 Pedotransfer Function for Water Contents 

A machine learning based pedotransfer function (PTF) was developed by Gaussian 

process regression (GPR) to obtain retention data for the dry range. Gaussian process regression 

uses nearest neighbors, considering the distance between neighbors based on covariance (or 

kernel) function. Closeness or similarity between two points (distance) is given by kernel 

functions (RASMUSSEN; WILLIAMS, 2006). Kernel similarities between a test point and 

each point of the training data are found to predict the target of the test point, thus kernel values 

of far points approach zero. Briefly, the mathematical form of GPR is 

[
𝑌𝑡𝑟

𝑌𝑡𝑠
] = 𝐺𝑃 [0, |

𝐾𝑡𝑟 𝐾𝑡𝑟𝑠

𝐾𝑡𝑟𝑠
𝑇 𝐾𝑡𝑠

|] (3.8) 

where Ytr and Yts are training and test targets (e.g., here water content points) and Ktr is the 

covariance of the training data, Kts of the test data, and Ktrs between test and training data. 

Considering a Gaussian likelihood function, the predictive mean yts for a given test point (xts) 

is 

𝑦𝑡𝑠 = 𝐾𝑥𝑡𝑠
𝑇 𝐾𝑥𝑡𝑟

−1𝑌𝑡𝑟 (3.9) 

where Kxts
T is the vector with the distances from xts to each training point. Optimization of 

kernel parameters and other details are explained in Kotlar et al. (2019a, 2019c). 
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The developed PTF allows prediction of water contents pF1, pF2, pF3 and pF4.2 

corresponding to pressure heads of −0.1 (pF1), −1 (pF2), −10 (pF3) and −158 m (pF4.2), 

respectively. For each water content (pF1, pF2, pF3 and pF4.2), easily measurable soil 

properties including texture (sand, silt, and clay contents), organic matter, and bulk density 

(BD) were used as predictors. Gaussian process regression was trained by a random selection 

of 70% of the data set including 452 soils from Denmark retrieved from Kotlar et al. (2019b). 

Considering the performance of the PTFs for the four tensions, some of them were selected to 

be used as additional data for the drier part in the inverse simulation. 

 

3.3 Results and Discussion 

3.3.1 Forward Modeling and Sensitivity Analysis 

Table 3.2 shows averages of the statistical indicators RMSE and NSE of pressure heads 

for the 100 one-parameter Monte Carlo simulations performed for each van Genuchten (VG) 

parameter for the reference sand, silt, and clay soils from Table 3.1. Results show that the 

prediction of pressure head is relatively insensitive to the residual water content, corroborating 

the report by Kelleners et al. (2005), as well as to saturated water content. Higher sensitivity is 

shown for n, Ks,  and especially . 

For silt and clay soils, the model showed less sensitivity to  compared with the sand 

soil. This could be expected because  especially affects the prediction of K(h) in the dry range, 

which occurs more commonly in ADI experiments in a sandy soil. Parameter  is the most 

sensitive parameter in the model for the sand and silt soils; this parameter strongly affects the 

pressure heads observed at the tensiometers. For the clay soil, the model is more sensitive to n. 

Sensitivity to  was not significant for the clay soil (Table 3.2), but for the studied Danish soils, 

with sandy loam texture,  was maintained as an optimization parameter. 

The low sensitivity of θr and θs, added to the fact that they can be experimentally 

measured, made it advantageous to fix these parameters at their true values instead of inversely 

model them. Therefore, only parameters α, n, λ, and Ks were optimized to obtain the soil water 

retention and hydraulic conductivity functions.  
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Table 3.2  RMSE and NSE of pressure heads obtained from simulations in sand, silt and clay soil (Table 

3. 1) scenarios in 100 Monte Carlo realizations for each of the VG parameters. Average (and 

standard deviations between brackets) for pressure heads at three depths (7, 10 and 13 cm), 

compared to values obtained with the reference parameter set 

Soil Criteria 
VG Parameters† 

θr θs α n Ks λ 

Sand 
RMSE 1.2(0.0) 1.5(0.0) 25.2(0.7) 3.5(0.6) 9.2(0.5) 9.9(0.1) 

NSE 0.98(0.0) 0.97(0.0) -5.38(1.8) 0.82(0.0) 0.09(0.1) -0.38(0.3) 

Silt 
RMSE 0.7(0.0) 2.0(0.0) 21.9(2.0) 10.8(1.0) 10.9(0.6) 3.3(0.3) 

NSE 0.99(0.0) 0.95(0.0) -3.04(1.2) -0.04(0.1) -0.19(0.0) 0.86(0.0) 

Clay 
RMSE 1.9(0.9) 1.7(1.1) 24.0 (12.5) 28.1(3.2) 13.6(6.5) 4.4(2.8) 

NSE 0.98(0.0) 0.98(0.0) -2.2(1.9) -3.6(1.8) 0.0(0.8) 0.88(0.1) 

† θr, residual volumetric water content; θs, saturated volumetric water content;  α, n and λ: fitting 

parameters; Ks, saturated hydraulic conductivity 

 

Results of the 2-D sensitivity analyses are shown in (Figure 3.2). For n and α (Figure 

3.2a), any change in α leads to large variation in the objective function however, n hardly affects 

the objective function and contours are parallel to the n axis. As a result, n is not sensitive  

to α and the forward problem of ADI is highly sensitive to α. This makes estimation of these 

parameters cumbersome, non-unique, when only pressure head data are used. The same applies 

to λ (Figure 3.2b) which is difficult to predict because the objective function approaches its 

minimum value when α is close to its reference (0.0191 cm-1).  

An increase in α together with an increase in Ks leads to similar values for the objective 

function (Figure 3.2c). Consequently, the forward problem of ADI has a high sensitivity to 

either α or to Ks. There is a larger sensitivity to n- λ, n-Ks and Ks- λ (Figure 3.2 d, e and f, 

respectively). Observing the n-λ response surface, the objective function reaches a low value 

for n between 1.1 and 1.2, almost independent of λ between -3 and 3. Low values for the 

objective function also occur when λ is between -1.2 and -2 and n varies from 1.3 to 2.5. For 

the case of n-Ks (Figure 3.2 f), there is a large area of insensitivity especially when both 

parameters are above their reference values (1.159 and 13.8 cm d-1, respectively). There is no 

specific pattern for the sensitivity of the problem to the simultaneous variation of Ks- λ (Figure 

3.2 f), however, low Ks with positive λ and high Ks with negative λ causes the objective function 

to increase.  
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Figure 3.2.  Response surfaces (2-D sensitivity analysis) of the objective function for pressure heads at 

three depths for parameter pairs (a) α-n, (b) α- λ, (c) α-Ks, (d) n- λ, (e) n-Ks, (f) Ks- λ 

 

3.3.2 Inverse modeling using synthetic data 

 

The synthetic data obtained by forward modeling of a hypothetical ADI experiment on 

the three soil types from Table 3.1 are shown in Figure 3.3 a. As expected, decrease in pressure 

head is faster and larger in the sandy soil. Temporal variation of pressure head measured by 

tensiometers is the typical output of ADI experiments (Figure 3.3 a), and is used in inverse 

(a) (b)

(c) (d)

(e) (f)
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modeling to predict SHPs. Figure 3.3 b shows a simulated measurement error imposed as a 

stochastic bias added to the numerically synthesized pressure head data (ADI output) for the 

silt soil. 

  
(a) (b) 

Figure 3.3.  (a) Simulated pressure head over time at three depths in simulated ADI experiments for 

three soil types; (b) example of the imposed stochastic bias added to the pressure heads for 

the silt soil. Numbers in the legend represent the depth (cm) of the tensiometers 

VG parameters estimated with and without added bias are shown in Table 3.1 together 

with their true values. The robustness of the proposed experiment to estimate SHPs is confirmed 

especially for sandy and clayey soils, with reference parameters equal or very close to estimated 

parameters (Table 3). As mentioned by Peters and Durner (2008), prediction of the hydraulic 

conductivity function is the most crucial part.  

Adding a small bias to the input data (as illustrated in Figure 3.3 b) introduced some 

uncertainties in the estimated parameters as shown in Table 3.3, except for the silty soil 

parameters. Prediction of λ shows to be cumbersome, occasionally with major differences 

between simulations with and without bias (sand soil) as well as large CVs (clay soil).  
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Table 3.3.  Soil hydraulic parameters estimated from synthesized data with and without added bias 

(standard deviation between parentheses if ≥ 0.5% of average value), together with true 

values for sand, silt and clay reference soils 

Soil Scenario 

VG parameters  

α  

(cm-1) 

n 

(-) 

Ks 

(cm d-1) 

λ 

(-) 

RMSEh 

(cm) 

Sand 

True Value 0.0214 2.075 15.56 0.039 - 

Estimated  0.0214 2.075 15.54 0.038 0.002 

Estimated with bias 0.0213 2.10 (0.3) 15.06 0.000 (0.01) 1.013 

Silt 
True Value 0.0160 1.370 6.00 0.5 - 

Estimated  0.0172 1.361 6.678 -0.001 0.018 

Estimated with bias 0.0171 1.363 6.610 0.000 0.052 

Clay 
True Value 0.0191 1.152 13.80 -1.384 - 

Estimated  0.0191 1.152 13.80 -1.384 0.000 

Estimated with bias 0.0182 1.154 12.83 (1.27) -0.975 (0.3) 0.036 

† θr, residual volumetric water content; θs, saturated volumetric water content; α, n and λ: fitting parameters; 

Ks, saturated hydraulic conductivity 

 

3.3.3 Pedotransfer function 

 

The developed GPR-PTF did not show robust for the prediction of water contents  

at pF 1, but at pF 2, 3 and 4.2 well-trained GPR-PTFs were obtained (Table 3.4) with a low 

error and an R2 of 0.99 in the training data set. Feature selection of GPR based on kernel 

parameters allows to eliminate predictors without a considerable negative effect on response 

prediction (KOTLAR et al, 2019a). Therefore, to predict θpF2, θpF3 and θpF4.2, two components 

of textural data (sand, sand/clay, or sand/silt content), organic matter content, and/or bulk 

density resulted as important predictors. Their predictive role was of similar importance for θpF2 

and θpF3 (Table 3.4), however, the silt fraction plays a more predominant role in the prediction 

of θpF4.2.  

 

Table 3.4.  Statistical indicators of performance of the GPR pedotransfer functions for the prediction of 

pF1, pF2, pF3, pF4.2 (volumetric water contents at pressure heads -0.1, -1, -10 and -158 m) 

for testing data and respective predictors (BD, bulk density; OM, organic matter content; 

sand, silt and clay contents) 

 
Targets 

θpF1 θpF2 θpF3 θpF4.2 

R2 0.534 0.952 0.894 0.946 

RMSE 0.035 0.019 0.026 0.012 

 

Predictors (weight in prediction) 

 

BD 

(1.0) 

BD (0.34) 

Sand (0.34) 

OM (0.31) 

BD (0.40) 

Sand (0.35) 

Clay (0.25) 

Silt (0.79) 

OM (0.20) 

Sand (0.01) 
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Given the observed performance of the four PTFs, θpF2, θpF3, θpF4.2 for each experimental 

ADI soil column were predicted with the trained GPR-PTF and used as additional data for the 

drier part in the inverse simulation. The use of both pressure heads and water content data 

improves the well-posedness of the inverse problem (KOOL; PARKER, 1988). 

Considering the bad performance of the respective PTF, θpF1 data were not used. This, 

however, was acceptable as many data from the ADI experiments were already available for 

very wet soil conditions. The average and coefficient of variation of measured soil parameters 

and estimated water contents for the fifteen soil columns are given in Table 3.5. 

 

 Table 3.5. Average and coefficient of variation (CV) for measured soil physical and hydraulic properties 

and PTF-estimated water contents for the soil columns (n=15) 

properties† Sand Silt Clay OM BD Ks θpF2 θpF3 θpF4.2 

unit (%) (g cm-3) log(cm d-1)  

Average 61.8 22.3 13.4 2.5 1.5 2.88 0.30 0.21 0.09 

CV (%) 3.5 3.9 9.1 7.5 4.9 122 3.9 7.0 8.4 

† sand, silt and clay fractions OM, organic matter content; BD, bulk density; Ks, saturated hydraulic conductivity, 

pF2, pF3, pF4.2, volumetric water contents at -1, 10 and 158 m of pressure head predicted by PTF 

 

3.3.4 Inverse modeling of actual measurements 

 

Addition of the water content data obtained from the developed PTF to the pressure 

head data from ADI resulted in proper estimation of VG parameters as illustrated in Table 3.6. 

Although the columns were sampled from the same field, there is an extensive variation of VG 

parameters except for n (with a standard deviation of 0.08). Minimum and maximum values for 

α are 0.014 and 0.052 (cm-1) and for λ are -1 to 24.4.  

There was no agreement between values of observed and simulated Ks. It should be 

remembered that Ks
sim values were obtained by inverse modeling from unsaturated columns, so 

they refer to extrapolation, and are meant to be used for prediction of unsaturated K values. 

Ks
obs values (Table 3.6) were obtained from actual measurements in laboratory. Similar findings 

were discussed by Pinheiro et al. (2018). Optimized parameters should be used only in  

the range where they were determined, and any extrapolation outside that range (as towards 

saturation) will be associated to a high level of uncertainty. Furthermore, there is spatial 

variability of Ks over small distances due to variability and connectedness of macropores 

formed by root channel, earthworms or variability in bulk density (compaction) highlighted by 
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Ghanbarian et al. (2017) and Garcia-Gutierrez et al. (2018). According to Table 3.6, the 

columns with the largest BD (>1.6 g cm-3) were columns 2, 3 and 15, corresponding to the 

lowest measured Ks. The highest values of Ks (9800, 5386 and 4068 cm d-1) belong to columns 

13, 4 and 12 respectively with BD of 1.45 g cm-3 on average. 

Table 3.6. Estimated parameters obtained from inverse modeling of ADI experiments in 15 soil 

columns, including GPR-PTF (h) values. (Standard deviations between parentheses  

if ≥ 0.5% of true value) 

Column 

number 

parameter†  

θs α (cm-1) n Ks
sim (cm d-1) Ks

obs (cm d-1) λ BD (kg m-3) 

1 0.442 0.0360 1.342 186.8 (22.4) 532 5.9 (0.2) 1.48 

2 0.381 0.0249  1.338 8.1 (0.2) 43 -0.02 1.64 

3 0.381 0.0512 1.263 21.60 60 0.01 1.64 

4 0.46 0.0515 1.269 29.6 (0.3) 5386.2 0.66 1.43 

5 0.457 0.0141 1.552 5.9 2146 24.38 (1.5) 1.44 

6 0.437 0.0391 1.275 7.1 (0.3) 845 0.001 1.49 

7 0.479 0.0491 1.247 32.5 (0.2) 2680 -1.03 1.38 

8 0.430 0.0360 1.372 9.6 (0.3) 494 0.02 (2.3) 1.51 

9 0.415 0.0249 1.329 3.0 (0.2) 1447 0.02 1.55 

10 0.453 0.0397  1.281 24.1 (1.8) 1735 -0.04 1.45 

11 0.445 0.0395 1.298 75.6 (4.0) 834 1.14 (0.1) 1.47 

12 0.456 0.0407 1.294 21.3 (1.7) 4068 3.10 (0.2) 1.44 

13 0.445 0.0405 1.245 24.66 (1.0) 9829 -0.002 

(0.2) 
1.47 

14 0.415 0.0379 1.251 20.9 (1.4) 373 0.001 

(0.04) 
1.55 

15 0.392 0.0520 1.239 25.6 32 0.02 1.61 

† θs, saturated volumetric water content;  α, n and λ: fitting parameters; Ks, saturated hydraulic 

conductivity; BD, bulk density 

 

 

When using only pressure head values in inverse modeling, no reliable SHPs were 

obtained. Values of RMSE for (h) are very high without employing the GPR-PTF and reduce 

to more acceptable values when including the GPR-PTF water contents (Table 3.7). As ADI 

data covered the wet range only, by excluding water content data no convergence was obtained 

for K(h) parameters and resulting retention parameters showed high errors in water content 

prediction (Table 3.7). In the predictions without GPR-PTF, unrealistic parameter prediction 

was frequently observed and inclusion of some water content values (θpF2, θpF3, θpF4.2) is required 

for proper estimation of θ(h) and K(h). Table 3.7 also evaluates the accuracy of simulated K(h) 

by Equation 3.3 in terms of RMSE and MSPE using the parameters in Table 3.6 in comparison 

to the observed values of K(h). Small values of K(h) or the dry-end tail of the K(h) function 
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may be overestimated by the obtained SHPs. RMSE is less able to detect this, because absolute 

values of errors in the dry zone are small. The relative indicator MSPE showed more adequate 

to express this.  

 Small values of RMSE do not always indicate a proper prediction of K(h). For example, 

columns 3, 7 and 10 correspond to similar values of RMSE but resulted in very different values 

of MSPE (126, 1519 and 131, respectively). Similarly, the lowest value of RMSE belongs to 

column 6 with MSPE equal to 260. 

Table 3.7.  Statistical indicators for the performance of θ(h) prediction by inverse modeling of ADI 

experiments in 15 soil columns including GPR-PTF water contents and without GPR-PTF 

data 

 Including GPR-PTF without GPR-PTF 

Column 

index 

RMSE K(h) 

(cm d-1) 

MSPE K(h) RMSE θ(h) 

 

RMSE θ(h) 

 

1 9.6 39 0.034 0.125 

2 0.2 30 0.037 0.030 

3 0.8 126 0.036 0.046 

4 2.3 176 0.025 0.117 

5 4.5 48 0.046 0.189 

6 0.1 260 0.052 0.164 

7 0.9 1519 0.039 0.043 

8 0.5 93 0.044 0.063 

9 0.5 13 0.022 0.231 

10 0.8 131 0.021 0.041 

11 3.5 54 0.035 0.030 

12 0.0 5 0.021 0.080 

13 0.5 50 0.024 0.191 

14 0.9 65 0.065 0.079 

15 0.3 14 0.038 0.049 

*for many cases VG parameters obtained from the scenarios without GPR-PTF did 

not result in reasonable values for K(h) 

 

 Figure 3.4 shows the retention and hydraulic conductivity functions obtained in soil 

columns 7 and 12, the ones with the highest and lowest deviations, respectively, between values 

of K measured and those obtained by inverse modeling. In the retention graphs, the dashed line 

is obtained using the VG parameters from Table 3.6. In some cases, larger deviations occur 

between measured values of K and those obtained by inverse modeling, in their drier part. This 

is the case, for example, in soil column 7, indicated in Figure 3.4 a by the red circle.  
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(a) 

  

(b) 

  

Figure 3.4.  Retention and hydraulic conductivity functions obtained in (a) soil column 7, the column 

with the highest deviation between K measured and obtained by inverse modeling, and (b) 

soil column 12, with the lowest respective deviation. Red circle in (a) shows the high 

deviation for some of the observed values. 

 Finally, average and standard deviations of water retention data (θs, θpF1, θpF2, θpF3, θpF4.2) 

measured by steady state methods (SSM) on small rings with the obtained ones from inverse 

modeling of ADI+PTF performed on large columns are compared in Figure 3.5. The difference 

between measured and simulated water contents for the drier soil (θpF3 and θpF4.2) is larger than 

for the wetter values. The water contents estimated by SSM were higher than those inversely 

obtained from ADI experiments. Differences increased to about 0.05 m3 m-3 in the drier region. 
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Figure 3.5.  Average of water content at pF1, pF2, pF3 and pF4 obtained from SSM (steady state 

methods) versus corresponding values obtained from inverse modeling of ADI + PTF 

 

3.4 Conclusions 

The here performed evaluation of automated drip infiltrometer (ADI) scenarios in 

numerical and real experiments to obtain soil hydraulic parameters from inverse modeling 

allowed to conclude that: 

• Evaluated for three reference soils, the inverse modeling of ADI experiments showed 

insensitive to residual and saturated water content. These parameters can better be 

measured or estimated than predicted from these experiments.  

• A numerical simulation of automated drip infiltrometer scenarios ADI showed robust 

prediction of soil hydraulic parameters by inverse modeling. Introduction of a random 

error on input data did not affect the parameter estimation notably.  

• Including water contents predicted for the drier soil by a Gaussian process regression 

PTF for the inverse modeling ADI data from 15 large undisturbed columns collected 

from the same field located in Denmark, Van Genuchten parameters α, Ks, n and λ were 

uniquely identified and the unsaturated hydraulic conductivities calculated by these data 

were in a good agreement with measured K(h). Not including the PTF water contents 

resulted in non-uniquely estimated van Genuchten parameters. 
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4 Assessment of nitrogen fertilizer release half-life using crop modelling based 

experiments 

 

Abstract  

Agricultural intensification to increase crop yield has been along with land use change and 

deforestation, especially in Brazil. However, proper nutrient, especially nitrogen delivery to plant can 

substantially boost crop productivity. Slow-release fertilizer using encapsulation of urea fertilizer is a 

suitable approach to improve nitrogen efficiency. This numerical study uses SWAP- N module crop 

model to assess the effect of hypothetical slow-release fertilizer with different half-lives 10, 20, 30 and 

40 days. The soil hydraulic parameters of typical layered profiles nearby Piracicaba under cultivation of 

summer maize and the recommended 180 kg N ha-1 was considered as major input of the model. Typical 

urea fertilization to provide 180 kg N ha-1 was simulated and then SRFs were applied in two different 

ways first when the 180 kg N ha-1 was added on the sowing date and secondly we assumed the 

application of alleviated weight of SRFs to provide the plant with 180 kg N ha-1 during cropping period.  

The yield of maize under application of SRFs with half-lives of 30 and 40 days can increase up to  

200 kg N ha-1 and leaching of nitrogen diminished by 30 to 40 kg ha-1, unless bottom layers of the soil 

profile are very permeable. In both scenarios of SRF application and in all soils, SRF with half-life of 

10 days resulted in more leaching and less uptake by the plant compared to typical fertilization scenario.  

 

Keywords: slow release fertilizer, layered soil profiles, nitrogen leaching, nitrogen uptake, half-life  
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4.1. Introduction 

 

More fertile land may meet the increasing trend of food demand for worldwide 

population. This directs the agriculture industry in a way that water and nutrient use efficiency 

of crops should be optimized for enhancing productivity (TIMILSENA et al., 2015). The 

sustainable agricultural intensification optimizes the use of resources and management aiming 

to increase land productivity (YAMAMOTO et al., 2016). Slow-release fertilizers (SRFs) have 

been developed to boost nutrient crop availability and reduce environmental N loss from the 

soil system. SRFs are engineered fertilizers manufactured by covering e.g. urea with 

environmentally friendly coatings which extend active nutrient release time synchronized with 

plant root uptake (SAHA et al., 2018). This release is complex and depends on different factors 

including nature of coating material, climatic conditions, soil physics and chemistry and etc. 

SRFs are expensive however they are applied once usually on sowing date.  

There have been numerous experimental studies committing to synthesis of SRFs and 

understand the nitrogen release and uptake. Inorganic materials especially sulfur has been 

suitable coating material as its low melting point, cost and being a secondary plant nutrient and 

fungicide (BLOUIN et al., 1971; ALLEN; MAYS, 1971; SALMAN et al., 1989; SHAVIV, 

2001 and TANG et al., 2018). Later on polymer coating materials due to higher cost and slow 

degradable residues in soil were replaced by starch based alternatives (DEVASSINE et al., 2002 

and MELLO et al., 2017). Lignin and cellulose were another interesting alternative for coating 

as its abundant in the pulp and paper industry wastes. Although various materials can be 

employed to coat fertilizer, they should be biodegradable and cheap in extraction and process.  

The experimental studies in the application of SRFs from the batch experiments to field 

scale cases are of great importance, however, experiments required time, chemicals and human 

resources, thus often impossible to be implemented (NAZ; SULAIMAN, 2016). Mathematical 

modelling allows considering the effective factors such as coating thickness and materials, soil 

properties such as water content, pH and other boundary conditions in the mechanism of 

nutrient release without performing any experiments. Generally, the nutrient release has been 

modelled from a granule of SRF by mechanistic or empirical approaches. Mechanistic models 

are constructed taking Fickian diffusion laws into consideration. The empirical model presented 

by King et al. (2000) considered the effect of soil water content and seven-day dissolution 

amount. Fujinuma et al. (2009) developed a time, temperature and soil moisture-based 

empirical model for nitrogen release based on the results of field experiments.  
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A logistic growth-based model was constructed by Tong et al. (2009). Mechanistic models are 

generated for sulfur and polymer-based SRFs. The developed mechanistic model by Jarrell and 

Boersma (1980) described urea release from sulfur coated fertilizer did not consider the 

geometry, size and volume to surface ratio of SRF. However, Shaviv et al. (2003) improved the 

non-linearity nature of the release process from polymer coating by considering pressure-

gradient-driven mass flow, dissolution, and chemical degradation of the coating. Nitrogen 

release was modelled using the finite element method in 2-D geometry and introducing urea 

diffusivity as a function of its concentration (TRINH et al., 2015). 

Using a computer model now facilitates the prediction of SRF application under 

simulated field conditions. Development of the soil-plant-atmosphere models results in more 

reliable crop yield predictions that are requiring for many crop management and marketing 

policies. Simulation of crop growth considering under different parameters and complexities 

can decrease the need for expensive and long term field trials. From the crop simulation models; 

water oriented ones i.e. agrohydrological models give better results as the soil water dynamics 

is driven by numerical simulation of Richards’ equation. SWAP (Soil; Water; Atmosphere and 

Plant) solves 1-D form of Richards’ equation knowing boundary and initial conditions at field 

scale besides hydraulic properties of the soil including soil water retention and hydraulic 

conductivity function (KROES et al., 2009). World Food STudies (WOFOST) model is coupled 

with SWAP to model crop growth and its production based on the incoming photosynthetically 

active radiation absorbed by the crop canopy; its photosynthetic leaf characteristics; and 

accounting for water and salt stress on the crop (KROES et al., 2009). The most recent 

developed soil N module also enables the simulation of nitrogen fate is soil-plant due to the 

application of mineral fertilizer or organic matter decay. This complete modelling package 

abbreviated SWAP-N makes the evaluation of the influence of land use changes and fertilizer 

managements on crop yield or environmental factors. There are few studies that modelled 

cropping systems in the south and southeastern regions; however; only part of them considered 

WOFOST model coupled with SWAP and there is no study to perform crop simulation under 

coupling of newly developed Nitrogen module (GROENENDIJK et al., 2016).  

An ideal SRF prolongs nitrogen release to meet crop requirement. To unify properties 

of slow-release fertilizer, the half-life of fertilizer can be used where longer half-life results in 

longer tailoring. Implementing these assumptions these assumptions into SWAP-N, one can 

assess the effect of SRF on different crops and soils under different climatic conditions.  
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To the best of authors’ knowledge, there is no research which numerically evaluates the 

fate of nitrogen released from SRF in the literature. Therefore, the objective of this study is to 

design and study the numerical experiments under application SRFs with different half-lives 

and maize cultivation under three typical soil profiles in the state of São Paulo, Brazil. 

 

4.2. Materials and Methods 
 

4.2.1. Soil and meteorological data  

Data of three soil profiles within the distance of 50 kilometers from each other nearby 

Piracicaba, Brazil under maize cultivation were retrieved from de Jong van Lier (2017). For 

these layered soils, water retention data were obtained using undisturbed samples by tension 

table and pressure plates and internal drainage experiment was performed to measure 

unsaturated hydraulic conductivities. Hydraulic properties were described using van Genuchten 

(1980) equations and shown in Table 4.1 

𝑆𝑒(h) =
θ(h)−𝜃𝑟

𝜃𝑠−𝜃𝑟
= (1 + |𝛼ℎ|𝑛)−𝑚 (4.1) 

𝐾(h) = 𝐾𝑠𝑆𝑒
𝜆[1 − (1 − S𝑒

1/𝑚
)𝑚]2 (4.2) 

where Se is the saturation degree, s and r are volumetric saturated and residual 

water contents, and  (cm−1), m = 1 − 1/n, and  are fitting parameters.  

Table 4.1 Hydraulic parameters of the soils according to the van Genuchten (1980) equation 

Soil  Layer (cm) θr θs α (cm-1) n Ks( cm d-1) λ 

(I) 

Sandy Clay 

Loam 

0-20 0.186 0.436 0.0263 2.328 27.18 2.02 

20-30 0.179 0.332 0.0275 1.697 25.49 0 

30-40 0.202 0.293 0.0070 2.919 42.29 7.17 

40-50 0.186 0.350 0.0262 1.523 42.77 0 

50-60 0.218 0.333 0.0154 2.570 34.12 0 

60-70 0.184 0.303 0.0181 1.869 43.24 0 

70-80 0.179 0.408 0.0269 2.754 118.79 1.99 

80-100 0.169 0.353 0.0289 1.735 79.29 0 

(II) 

Sandy Clay 

Loam 

0-15 0.113 0.469 0.0593 1.608 38.20 -0.36 

15-30 0.138 0.362 0.0421 1.759 32.80 1.13 

30-45 0.112 0.332 0.0373 1.551 24.00 2.16 

45-60 0.144 0.329 0.0392 1.527 17.50 1.30 

60-100 0.142 0.351 0.0424 1.487 17.50 1.76 

(III) 

Clay 

0-20 0.275 0.463 0.0232 1.389 76.42 3.93 

20-40 0.290 0.447 0.0181 1.356 113.85 4.71 

40-60 0.287 0.444 0.0136 1.443 120.54 4.98 

60-80 0.270 0.506 0.0254 1.590 1352.34 4.96 

80-100 0.257 0.513 0.0265 1.583 2014.19 4.97 
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Daily meteorological data were obtained for a 38-year period (1990-2008) from the 

University of São Paulo weather station in Piracicaba, Brazil (22.703˚S;47.624˚W), 

representing the sub-tropical winter-dry climate (Koeppen Cwa) of southeast Brazil. Potential 

(reference) evapotranspiration for a hypothetical grass surface was calculated based on the 

Penman-Monteith (ET0P, mm d⁻1) equation (2.1) (ALLEN et al., 1998): 

𝐸𝑇0𝑃 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇𝑎𝑣𝑒 + 273

𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
 

(4.3) 

 

In equations (4.3), Rn and Rs are the net radiation at the crop surface and solar radiation  

(MJ m-2 d-1), G represents the soil heat flux density which is usually ignored in daily 

calculations (MJ m-2 d-1), T (℃) and u2 (m s-1) are mean temperature and wind speed at 2 m 

height, (es-ea) is the vapour pressure deficit (kPa), Δ is the slope of the vapour pressure curve 

(kPa ℃-1) and γ is the psychometric constant, equal to 0.06317 kPa ℃-1 for the Piracicaba 

weather station. 

 

4.2.2. SWAP-1D numerical modelling 

 

The SWAP-1D model numerically simulates the temporal and spatial changes in water 

content by the Richards’ equation: 

∂θ

∂t
=

∂

∂z
[k(h)

∂h

∂z
− k(h)] − S(h, z, t) (4.4) 

 In this equation, θ is volumetric soil water content, t is time (d), z is the vertical space 

coordinate (cm), k is the hydraulic conductivity (cm d-1), h represents pressure head (cm) and  

S is the sink term (d-1) accounting for the volume of water removed from the soil per unit of 

time due to crop water uptake and described by 

S(h, z, t) = α(h)Sp = α(h)β(z, t)Tp (4.5) 

where Sp is the potential water uptake rate (d-1) calculated from the potential transpiration rate 

Tp (cms-1) distributed over the root zone based on the normalized root density distribution 

function β(z,t) (cm-1). 0 ≤ α(h) ≤ 1 is a dimensionless root water uptake stress reduction function 
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proposed by Feddes et al. (1978) defined by crop dependent parameters described for grass in 

(FEDDES; KOWALIK; ZARADNY, 1978). 

Maize was simulated under rainfed conditions planted in the middle of October and 

harvested on February. Major required crop data in SWAP-N input were extracted from 

calibrated regional study (PINTO et al., 2019) and shown in Table 4.2.  

 

Table 4.2. Main calibrated crop data parameters 

Parameter; Description Value Unit 
Hmax; Plant maximum height 200 cm 

Cref; Reflection coefficient, Albedo  0.2 - 

RSC; Minimum canopy resistance  131 s m-1 

Tsum,ea; Temperature sum from emergence to anthesis 1000 °C 

Tsum,am; Temperature sum from anthesis to maturity  1150 °C 

Amax,d; Maximum CO2 assimilation rate  35 kg ha-1 d-1 

RLAI; Maximum relative increase in LAI  0.012 m2 m-2 

Kdif; Extinction coefficient for diffuse visible light  0.60 - 

Kdir; Extinction coefficient for direct visible light  0.75 - 

eff; Light use efficiency 0.45 kg CO2 j-1 

Cvl; Assimilates conversion efficiency into leaves  0.68 kg kg-1 

Cvo; Assimilates conversion efficiency into storage organs  0.67 kg kg-1 

Cvr; Assimilates conversion efficiency into roots  0.29 kg kg-1 

Cvs; Assimilates conversion efficiency into stems  0.66 kg kg-1 

Rit; Relative increase in respiration rate with temperature  2.00 kg CH2O j-1 d-1 

Rml; Relative maintenance respiration rate of leaves  0.03 kg CH2O j-1 d-1 

Rmo; Relative maintenance respiration rate of storage organs  0.01 kg CH2O j-1 d-1 

Rmr; Relative maintenance respiration rate of roots  0.015 kg CH2O j-1 d-1 

Rms; Relative maintenance respiration rate of stems  0.015 kg CH2O j-1 d-1 

Pdl; Maximum relative death rate of leaves due to water 

stress  
0.03 d-1 

Critical pressure heads according to Feddes   

h1 -10.0 cm 

h2u -25.0 cm 

h2l -25.0 cm 

h3h -400.0 cm 

h3l -500.0 cm 

h4 -10000.0 cm 

; Interception coefficient 0.25 - 

Rrd,i; Maximum daily increase in rooting depth  2.20 cm d-1 

Rd,m; Maximum root depth 100 cm 

BC; Below ground plant coverage 0.5 - 
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4.2.3. N module paramters and Fertilizer application  

A soil nitrogen module (N- module) implemented in the SWAP model simulates the 

nitrogen fate in soil, plant and atmosphere due to fertilizer or organic matter decay. The 

ammonium balance is as  

𝑦𝑡𝑠𝐾𝑠𝑜𝑟𝑏𝜌𝑑
𝑑𝐶𝑁𝐻4

𝑑𝑡
+

𝑑𝜃𝐶𝑁𝐻4

𝑑𝑡
= 𝑞𝑖𝑛𝐶𝑁𝐻4;𝑖𝑛

− 𝑞𝑜𝑢𝑡𝐶𝑁𝐻4;𝑜𝑢𝑡
+ 𝑅𝑁𝑚𝑖𝑛 − 𝑅𝑁𝐻4;𝑢𝑝𝑡

− 𝑅𝑛𝑖𝑡𝑟  (4.6) 

 

where CNH4 is the concentration of NH4 in soil water (kg m-3); CNH4;in is the concentration of 

NH4 in flowing water with flux qin (m d-3) of  and qout is the flux of out-flowing water. Ksorp is 

linear sorption constant (m3 kg) and ρd is dry bulk density (kg m-3). RNH4;upt and Rnitr are NH4 

mineralization; uptake and nitrification rates (kg m-3 d-1). We assumed volatilization is zero. 

Similar to NH4 balance; nitrate balance is governed by  

𝑑𝜃𝐶𝑁𝑂3

𝑑𝑡
= 𝑞𝑖𝑛𝐶𝑁𝑂3;𝑖𝑛

− 𝑞𝑜𝑢𝑡𝐶𝑁𝑂3;𝑜𝑢𝑡
+ 𝑅𝑛𝑖𝑡𝑟 − 𝑅𝑁𝑂3;𝑢𝑝𝑡

− 𝑅𝑑𝑒𝑛𝑖𝑡𝑟   (4.7)  

 

For establishing the nitrate uptake by plant roots (RNO3,upt); two calculations of the mass 

conservation equation are performed. In the first calculation; the uptake is set equal to the 

demand of the crop; as calculated by the WOFOST model. In the second calculation; RNO3,upt 

is formulated as a first order term and it is assumed that the uptake is limited by the nitrate 

amount in soil.  

The soil N module requires parameters to model the nitrogen chain and fate. Firstly, the 

time of fertilization should be specified. Typical scenario usually done in the regional fields is 

180 kg N ha -1 for maize (CANTARELLA et al., 1997), thus in this study we applied 

65 kg Urea ha -1 on sowing day plus 325 kg Urea ha -1 at about V6 or 4 weeks later. However, 

for hypothetical SRFs we considered two scenarios. (i) SRFs with different half-lives (Half-

life=10, 20, 30 and 40 days) should be applied in the same quantity as typical fertilizer 

(Mtyp=180 kg ha -1) in the sowing date. In this case, not all the nitrogen (390 kg ha -1) will be 

released during 120-day crop growing and remaining part will be released after harvest so we 

assume that part is lost, so crop may tolerate nitrogen stress. In the second scenario (ii) the 

increasing initial amount of SRF was applied on the sowing date to provide crop all 

180 kg N ha -1 during crop growth and the remaining part is again lost. This alleviated amount 

of fertilizer required to compensate nitrogen is calculated by  
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𝑀𝑠𝑟 = ∑
M𝑟𝑒𝑞,𝑛

2𝑛

𝑚

𝑛=1

 
 (4.8) 

where m is the growing time divided by half-life of slow release fertilizer.  

 

4.3. Results and Discussion  

According to our assumptions for application of urea SRF, there is nitrogen loss for all 

half-lives except for the one with half-life of 10 days (Figure 4.1). Assuming the first scenario 

when 180 kg N ha -1 was applied, there could be 5, 16 and 29 kg N ha -1 lack of nitrogen for 

plant uptake during growth time for SRFs with half-life of 20, 30 and 40 days. On the other 

hand, excessive application of urea when scenario (ii) was considered because this excessive 

amount guarantees delivering of 180 kg Urea ha -1 urea during plant growth, although the 

remaining should be considered as N loss when they are released after plant harvesting.  

 
*This is for the first scenario when 180 kg N ha-1 SRF was applied 

**this is for the second scenario when SRF applied to provide 180 kg N ha-1 urea 

 

Figure 4.1 Quantification of released and required urea SRF applied in sowing date for scenario (i) and 

(ii) 
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The results of numerical simulation of assumptions in scenario (i) are shown in Figure 

4.2. Note that as the amount of release for SRFs with half-lives of 10 and 20 days between 

scenario (i) and (ii) similar, their corresponding results are explained later. Different soils led 

to different fate of 180 kg N ha - 1 with half-life of 30 and 40 days. Although 30 days’ half-life 

did not significantly change nitrogen uptake it increased yield by about 200 kg ha - 1 in soils I 

and II and 20 kg ha - 1 nitrogen leaching reduction. When half-life increased to 40 days, more 

than 250 kg ha - 1 yield reduction was observed in soil III while still yield in the other two soils 

improved. Indeed, considering scenario (i) the availability of nitrogen diminished by increasing 

half-life so there is high nitrogen stress in years with intense rainfall in the early days of plant 

growth when more nitrogen is released.  

 

   

Figure 4.2. Changes in nitrogen uptake and leaching as well as yield under application of different SRFs 

with half-life of 10, 20, 30 and 40 days with the same weight of typical fertilizer compared 

to the corresponding values using typical 

 

The uptake and leaching of nitrogen besides grain yield of simulated maize are plotted 

in Figure 4.2. Generally, increase in half-life resulted in increase in nitrogen uptake and yield, 

however leaching of nitrogen was reduced, regardless of inherent 25 and 50 kg nitrogen loss of 

slow release fertilizers with half-life of 30 and 40 days. Nitrogen uptake increased more by 

increasing half-lives for soils (II) and (III) where 7 and 10 kg ha - 1 rise in N uptake was 

observed in using SRF with 40 days’ half-life compared to typical urea fertilizer. However, in 

soil (I), no improvement in nitrogen uptake between SRF with half-life of 20, 30 and 40 days 

occurred. A very permeable layer in soil (III) can affect in a way that no more nitrogen is taken 

up by plant due to increasing half-life. This simulated maize has 60 cm rooting depth on average 

within the first 30 days and in this depth soil hydraulic conductivity is extremely large in this 

soil, thus movement of water in lower depths are faster than root uptake. Therefore, soils with 

permeable layers at the bottom could entirely react in a different way with SRFs. In soil (III), 
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no significant change between nitrogen leaching and yield were observed along with half-life 

increasing, confirming that during plant growth extension of half-life will. In soil (II) and (III), 

using SRF with longer half-lives can reduce nitrate leaching by more 10 kg ha – 1, however SRF 

with half-life of 10 days resulted in increase in leaching by 10 and 6 kg ha - 1 compared to the 

typical fertilizer (half-life of zero). In these soils (II and III), SRF with 40 days’ half-life led to 

350 and 400 kg ha - 1 yield increase in comparison to application of typical fertilizer.  

 

Soil (I) Soil (II) Soil (III) 

   

   

   

Figure 4.3 Nitrogen uptake and leaching as well as grain yield of maize under application of different 

SRFs with half-life of 10, 20, 30 and 40 days and typical fertilizer with zero half-life 

  

4.4. Conclusion  

  

Synchronized nitrogen delivery to plant with plant growth is the most optimal 

management practice, however this task depends on the complex system of soil plant 

atmosphere. In this study, we demonstrated that using numerical experiments the fate of 
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nitrogen from hypothetical slow release fertilizers with half-life of 10, 20, 30 and 40 days can 

be traced within the media. Short time slow release fertilizer did not provide required amount 

of nitrogen for maize, however, SRF with longer half-life increased nitrogen uptake by plant. 

Using slow release fertilizer with half-life between 20 to 40 days for maize cultivation in Sao 

Paulo, Brazil, 200 to 400 kg ha - 1 yield increase and 10 kg ha - 1 nitrogen leaching reduction can 

be expected.  
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5 Nitrate leaching from layered double hydroxides in tropical and temperate soils  3 

 

Abstract  
 

We evaluate layered double hydroxide (LDH) as a potential alternative for nitrate slow release fertilizer. 

Synthesized Mg-Fe-NO3 LDH particles with Mg:Fe (2:1) were synthesized by coprecipitation and 

characterized by ICP-OES, XRD, FTIR and TGA analyses. Batch experiments with LDH particles 

containing 0.5, 0.1 or 0.01 M of KCl, K2SO4 or CaCl2 showed that 60 to 100% of intercalated nitrate is 

exchanged by anions within a few hours. Soil column studies with soils from temperate (Denmark) and 

tropical (Brazil) regions confirmed rapid release of nitrate from LDH. A reduction of 22% in nitrate 

leaching was the best result obtained for LDH applied to the Danish soils. The highest X-ray 

fluorescence spectroscopy (XRF) intensities of Fe and Mg were recorded at the top 0.5 cm of tropical 

soil columns, showing the high retention of LDH residues at soil surface. Application of LDH to a soil 

profile with bulk density of 1300 kg m-3, 0.3 m rooting depth and a typical rate of field nitrogen 

application (120 kg ha-1) caused accumulation of 400 to 1050 kg Mg and 230 to 478 kg of Fe or Al 

depending on type of LDH. This high load of residual metals may restrain the use of the LDH as slow 

release nitrate source. 

Keywords: Layered double hydroxide; sustained release fertilizer; nitrate leaching; unsaturated soil 

column  

 

  

                                                           
3 Kotlar, A.M., De Carvalho, H. W. P., Iversen, B.V., De Jong van Lier, Q. Nitrate leaching from layered double 

hydroxides in tropical and temperate soils. Applied Clay Science, 184, 2020. DOI: 10.1016/j.clay.2019.105365 
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5.1. Introduction 

 

One of the main challenges of the fertilizer industry consists in raising efficiency of its 

products (AZIZ et al., 2015; SAHA et al., 2018). Due to competing condition of soil and plant 

for nutrients, any type of fertilizer improvement or field activities by farmers must aim at 

facilitating plant nutrient uptake within this competing system (KOTTEGODA et al., 2011).  

Nitrogen emissions due to human activities receives much attention and the nitrogen 

footprint is used by policy makers to assess sustainability of resource use (GALLOWAY et al., 

2014). Agricultural activity is one of the main sources of nitrogen emissions to the environment 

(XIAN et al., 2019). The main forms of nitrogen fertilizers used in agriculture are urea, 

ammonium, and nitrates. After field broadcasting, nitrogen may be lost by volatilization, 

immobilization, denitrification and leaching. Especially nitrate, which is negatively charged, 

does not readily bind to soil minerals and is therefore susceptible to leaching, possibly 

accumulating in groundwater and the surface waters. It may contaminate and cause 

eutrophication of lakes and coastal marine ecosystems, representing a significant economic loss 

for farmers and society (TORRES-DORANTE et al., 2008) and a risk of oxygen depletion of 

water bodies. Nitrate can also be converted to nitrous oxides, a greenhouse gas, and be lost via 

volatilization (ZHANG et al., 2015).  

Improved management with a proper selection of fertilizer type, rate, placement, and 

timing can diminish such losses. Among the management options, fertilizers with controlled or 

slow release properties have been extensively studied (TIMILSENA et al., 2015, NAZ; 

SULAIMAN, 2016; GIROTO et al., 2017 and LI et al., 2018). Encapsulation and coating 

technologies diminish dissolution rate of fertilizer and reduce leaching of nitrate making it 

longer available to plants. Slow and controlled release of nitrate from fertilizer, particularly in 

well-drained weathered tropical soils with excess rainfall, may prevent nitrate loss and maintain 

more available nitrate for plants, resulting in higher yields and reduced greenhouse gas 

emissions and leaching (NYAMANGARA et al., 2003).  

Layered double hydroxides (LDHs) are natural or synthetic layered mineral compounds 

with a structure identical to the mineral brucite Mg(OH)2; chemical formula of 

[𝑀1−𝑥
2+ 𝑀𝑥

3+(𝑂𝐻)2]𝐴𝑥/𝑚
𝑚− 𝑛𝐻2𝑂; where M2+ and M3+ are divalent and trivalent metals; An- is the 

interlayer anion and x=M3+ / (M3+ + M2+).  
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In terms of agrochemical application; the positive charge bared by LDH has been 

explored as a carrier for anionic nutrients and herbicides (GILLMAN, 2005; BRUNA et al., 

2009; BENICIO et al., 2015). Several parameters in the synthesis process and adsorption-

desorption experiments could affect the sustainable release of interlayered anions. For example; 

Halajnia et al. (2012) concluded that one gram of low charge density of Mg-Al LDH (x=0.25) 

adsorbed 38.4 mg of nitrate which was twice of the amount incorporated by x=0.33; illustrating 

higher nitrate affinity for LDH metal layers dominated by divalent cation (EVERAERT et al., 

2016). However; the maximum nitrate adsorption for the LDH in which Fe is used as trivalent 

cation was roughly equal for either LDH with x=0.25 or 0.33 (HALAJNIA et al., 2016); which 

was 67% of adsorption capacity of the same LDH reported in (SASAI; NORIMATSU; 

MATSUMOTO, 2012). Therefore; metal types and ratios could change adsorption capacity of 

nitrate. The highest adsorption capacity of nitrate 67.73 mg/g LDH has been revealed in a study 

done by Tong et al., (2017) with the Mg- Al- Fe (3- 0.1-0.9) LDH.  

Results from a batch study by Olfs et al. (2009) showed that 100% of nitrate intercalated 

in Mg- Al LDH exposed to different anionic environments left the LDH in an hour equilibrium 

experiment. Urena-Amate et al. (2011) showed that unmodified granules Mg-Al LDH released 

more than 90% of its intercalated nitrate less than 10 h. However; the modification of LDH by 

hydroxypropyl methylcellulose could increase nitrate buffer capacity.  

The literature presents many studies regarding nitrate adsorption by LDH, however less 

attention is dedicated to the release rate of nitrate used in fertilizer. Additionally, current 

available studies do not focus on the applicability of LDH as a slow release fertilizer. 

Apparently, in most cases nitrate release or anion exchangeability is fast, of the order of 

magnitude of hours, and the low loading capacity of nitrogen provided by LDH does not seem 

to be adequate for crop uptake and agricultural applications. More importantly, there is lack of 

soil column studies testing the fate of LDH components and intercalated nitrate, especially 

under unsaturated flow conditions which are most common in the field.  

The main objective of this study was therefore to evaluate the nitrate release from 

synthesized LDH particles under kinetic and equilibrium batch (soilless) and unsaturated flow 

(soil column) conditions using soil material from temperate and tropical regions. The fate of 

the cationic component of LDH particles was also studied.  
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5.2. Materials and Methods 

5.2.1. Synthesis of Mg-Fe-NO3 LDH 

The chemicals required for the synthesis of the nitrate form of LDH, including nitrate 

salts of Mg, Fe and KOH with purity of 99%, were purchased from Merck, Germany. 

Magnesium (II) nitrate hexahydrate and iron (III) nitrate nanohydrate were dissolved in 100 ml 

of degassed deionized water (DDW) yielding a solution with a Mg:Fe molar ratio of 2. This 

solution was added to a reactor equipped with a pH meter dropwise and under rigorous magnetic 

stirring, purging nitrogen gas in order to prevent carbonate contamination. The increase of pH 

of the resultant slurry caused by the metal addition in the reactor was controlled to remain 

between 10 to10.5 by the adding of a 2 M KOH solution during the synthesis. The co-

precipitation product was aged for 24 hours followed by three times subsequent washing with 

DDW water and centrifuging (10 minutes at 2000 rpm). The resulting solids were dried at 70°C 

overnight, milled and passed through a 0.5 mm mesh sieve.  

 

5.2.2. Characterization of LDH 

The chemical composition of synthesized LDH was determined by inductively coupled 

plasma optical emission spectrometry (ICP-OES; Perkin Elmer Optima 3300 DV) through acid 

digestion (20% HNO3). Powder X-ray diffraction scans were performed using a Philips PW 

1877 difractometer; with Ni-filtered Cu- Kα radiation; a 0.02° step size and one second 

counting time. The scan ranged from 3° to 90°. Fourier Transform Infrared (FT-IR) spectra 

were recorded on a Shimadzu IRPrestige-21 spectrometer. Spectra were recorded by 

accumulating 50 scans in the 4600–400 cm−1 spectral range in absorbance mode with a 

resolution of 2 cm-1. Approximately 0.50 mg of sample was homogenized in 250 mg of 

spectroscopic-grade KBr and pressed into a pellet for analysis. Samples were analyzed 

immediately after preparation in a nitrogen atmosphere. Thermogravimetric analyses (TGA) 

were carried out with a DTG-60H-Simultaneous DTA-TG; Shimadzu; Kyoto; Japan. The scans 

were performed from room temperature to 1200 °C; heating rate 10 °C min-1 in a nitrogen 

atmosphere. 
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5.2.3. Nitrate release batch experiments 

Different background electrolytes (CaCl2; KCl and K2SO4) were tested in order to assess 

nitrate exchangeability by common counter-anions. For equilibrium experiments;  

50 milligrams of milled as- synthesized LDH was dispersed in 20 ml of solutions containing 

0.5; 0.1 and 0.01 mol L-1 of CaCl2; KCl and K2SO4 in centrifuge tubes. Three replicate samples 

were subsequently shaken during 2 h followed by centrifugation at 2000 rpm for 3 minutes. 

Kinetic experiments of nitrate release were performed using 0.01 mol L-1 of CaCl2; KCl and 

K2SO4. In these experiments; the nitrate concentration at different times was measured by the 

extraction of supernatants. For both equilibrium and kinetic batch experiments; the relative 

amount of released nitrate (nitrate concentration in extracted supernatants relative to the initial 

nitrate concentration in the batch) was reported. 

 

5.2.4. LDH dissolution experiment 

A LDH dissolution experiment was conducted by dispersing 500 mg of LDH powder in 

50 ml of solutions with different pH (between 3-9) synthesized by H2SO4 or KOH carried out 

under end over end mixing for 24 hours. The pH; ranging from moderately acid to slightly 

alkaline; corresponds to values typically found in soils. After shaking; samples were centrifuged 

for 10 minutes at 3000 rpm and the supernatant was withdrawn for determination of dissolved 

Mg and Fe by atomic adsorption spectroscopy. The release fraction of the components is the 

ratio of the concentration of Mg or Fe in the supernatant at each pH relative to the total 

concentration of the metal in the LDH.   

 

5.2.5. Soil column study 

Soil column experiments were performed with material from temperate soils from 

Denmark and tropical soils from Brazil, with selected properties given in Table 1. Columns 

with temperate soils were larger (9.6 cm diameter) in order to obtain transport parameters, while 

smaller columns (diameter of 2.5 cm) with tropical soil material were used for X-ray 

fluorescence spectroscopy (XRF) line scan. The height of columns in both experiments  

was 8 cm.   
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To evaluate how fast nitrate is released from LDH under flow conditions, two replicates 

from each of the larger soil column with temperate soil material from Denmark were physically 

and chemically equilibrated by running a flow of 0.01 mol L-1 CaCl2 for 6 hours. In sequence, 

the soil surface in the column was covered by a thin layer of 3 g LDH, uniformly applied and 

avoiding about a few mm nearby the column walls, and flow was run again. The concertation 

of nitrate was measured in collected leachate. Although there is a variety of methods to perform 

LDH transport experiments at column scale, for the purpose of this study the surface application 

matches most with reality as mineral fertilizers are typically spread on the soil surface. Another 

advantage of surface application resides in the possibility of performing the nitrate transport 

experiment before and after addition of LDH. LDH amended soil prohibits the possibility of 

establishing in advance equilibrium condition, consequently the soil free of LDH should be 

used. One could consider mixing a thin layer of soil with LDH particles, but this would cause 

a loss in uniformity and continuity, especially important under unsaturated flow conditions.  

The soil column study was designed to explore the fate of nitrate in cases where LDH 

particles are used as nitrate source. In order to verify the capability of LDH to perform retention 

of nitrate from an external source, a pulse of KNO3 was applied before and after covering the 

surface of the column with LDH. Subsequently, the leaching of intercalated nitrate was 

investigated after the added nitrate from KNO3 was completely washed from the soil column. 

Finally, when the nitrate from the previous step was totally washed away, another pulse of 

KNO3 was applied to investigate to what extent the remaining LDH particles were capable to 

retain the nitrate. Breakthrough curves (BTCs: relative solute concentration versus relative 

time) of nitrate were obtained for all steps and compared to assess nitrate retention by LDH 

particles. 

Soil column studies with tropical soil material were designed to better explore the fate 

of added cationic LDH components. In Brazil, 58% of territory is covered by highly weathered 

Oxisols and Ultisols which are rich in Fe and Al (hydr)oxides. Management practices to rise 

pH (mainly by liming) are widely used to reduce the availability and toxicity of these elements 

and enhance the availability of anions like phosphates. Therefore, addition of any mineral 

fertilizer composed of Fe or Al to these soils would be a countersense. The smaller columns 

with tropical soil material were physically and chemically equilibrated like the temperate soil 

columns. A pulse of nitrate tracer was applied and LDH was added on top in four steps, adding 

20, 50, 100 and 100 mg. Each adding was done when all nitrate from the previous step had been 

removed from the column, warranted by allowing enough time of washing with the background 
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solution at known concentrations. Finally, a pulse of nitrate was applied to assess the nitrate 

adsorption of remaining LDH particles. 

After finishing the leaching experiments in the columns with tropical soil material, they 

were cut longitudinally into two hemicylinders which were dried at 45°C for a week. In order 

to trace the diffusion of LDH along the soil column, the hemicylinders were line-scanned by 

X-ray fluorescence (XRF) spectroscopy. XRF scanning is noninvasive and generates high 

resolution records of elemental variations of unprocessed samples (CHAWCHAI et al., 2016). 

The XRF intensity of Mg and Fe were monitored using a 1 mm X-ray beam under vacuum 

conditions. The measurements were performed using a benchtop µ-XRF system (Orbis PC 

EDAX, United States) furnished with a Rh anode operating at 400 µA of tube current beside 

40kV. The Si-SDD detector worked at 20 s dwell time. 

 

Table 5.1. Some properties of temperate (Denmark) and tropical (Brazil) soils used in soil column 

experiments 

sample  
Region and 

column size 
clay (%) Silt (%) Sand (%) OM (%) BD (g cm-3) texture 

S(S) † 

Denmark 

Ø 9.6 cm 

height 8 cm  

0 0 100 0 1.41 Sand 

S(L) † † 0 0 100 0 1.39 Sand 

Fensholt 19.8 17.2 57.1 5.9 1.35 
Sandy clay 

loam 

Foulum 10.8 8.7 79 1.5 1.44 Sandy loam 

Aarslev 11.2 18.6 72.7 2.5 1.41 Sandy Loam 

B1 Brazil 

Ø 2.5 cm 

height 8 cm 

55 16 29 1 1.65 Clay 

B2 17 12 71 5 1.75 Sandy Loam 

† 0.9-1.6 mm grain diameter †† 0.18-0.5 mm grain diameter 

 

 

5.2.6. Solute Transport Parameters Estimation 

 

The data from obtained BTCs of temperate soils were fitted to the dimensionless 

advection dispersion equation (ADE) Equation 5.1 to obtain the respective soil transport 

parameters and to assess the changes in these parameters caused by the addition of LDH:  

𝑅
𝜕𝑐

𝜕𝑇
=

1

𝑃

𝜕2𝑐

𝜕𝑋2
−

𝜕𝑐

𝜕𝑋
 (5.1) 

where T(=v.L/t) and X (=x/L) are the dimensionless time and distance (L: length of soil column 

and v is pore water velocity ) and c is the normalized concentration representing reduced 
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volume averaged solute concentration and R is retardation factor. The Peclet number; (P= L/λ); 

where λ is the length of flow path (λ =D/v) and D is effective dispersion coefficient [ML-2]; 

allows to assess which mechanism of transport (advection or diffusion) dominates the flow. 

Larger values of the Peclet number indicate domination of advection dispersion transport to 

diffusion. If the equilibrium model (Equation 5.1) failed to describe BTCs; a two region non-

equilibrium model; Equation 5.2; was used which takes into account mobile and stagnant water:  

𝛽𝑅
𝜕𝑐𝑚

𝜕𝑇
=

1

𝑃𝑚

𝜕2𝑐𝑚

𝜕𝑋2
−

𝜕𝑐𝑚

𝜕𝑋
− 𝜔(𝑐𝑚 − 𝑐𝑖𝑚) (5.2) 

(1 − 𝛽)𝑅
𝜕𝑐𝑖𝑚

𝜕𝑇
= 𝜔(𝑐𝑚 − 𝑐𝑖𝑚) 

(5.3) 

where m and im subscripts refer to the mobile and immobile phase; β a dimensionless non-

equilibrium partitioning coefficient varies from 0 (all non-equilibrium) to 1 (all equilibrium) 

and; and ω is a dimensionless mass transfer coefficient determining the rate of exchange 

between mobile and immobile fluid regions.  

 

5.3. Results and Discussion 

5.3.1. LDH Characterization 

ICP-OES revealed an experimental Mg:Fe molar ratio of 2.13 (or: x = 0.32) which 

confirmed the prior assumption regarding the value of x, showing correct elemental 

composition. Sharp and asymmetrical peaks at low 2θ values and only some asymmetrical 

peaks at high angles for XRD pattern (shown in Figure 5.1) are typical pattern of the formation 

of the good crystalline LDH materials (FERREIRA et al., 2004; SASAI et al., 2012). Layered 

structures with a basal distance (d003) of 8.07 obtained from Bragg’s law with peak occurring 

at 11.01° which is similar to the values reported by Chao et al. (2008) and  

Nejati et al. (2011). Consequently, lattice parameters including c (=3×d003) = 24.21 Å and  

a (=2×d110) = 3.11 Å are therefore compatible with results from Halajnia et al. (2012) and 

Shafigh et al. (2019). Considering 4.8 Å as constant layer thickness of brucite, resulting 

interlayer thickness was 3.27 Å, capable of allocating nitrate (2.76 Å) and water inside. The 

same results were reported by Imran et al. (2016) and Olfs et al. (2009) under very similar 

synthesis conditions. Note that basal spacing for nitrate intercalated LDH, mostly synthesized 

by Mg and Al, were reported between 7.8 to 8.8 Å due to varying effective parameters such as 
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type of cation, x and pH (OLANREWAJU et al., 2000; UREÑA-AMATE et al., 2011; 

HALAJNIA et al., 2012; EVERAERT et al., 2016).  

 

 

Figure 5.1 XRD patterns of synthesized LDH 

 

Infrared analyses of synthesized LDH allowed to verify the nitrate intercalation by 

detecting a typical vibrational band profile of anionic clay materials. FTIR spectra (Figure 5.2) 

at low wavelength (<600 cm-1) were attributed to the vibration of metal oxygen (MOM; OM; 

and OMO). As an example; the spike at 567 cm-1 was due to FeO6 and MgO6 octahedral bonds 

and are typical of LDH solid materials as mixed oxides were precipitated (OLFS et al., 2009; 

BERBER et al., 2014). However; the shoulder at 1070 cm-1 is assigned to N-O stretching bands 

besides the most intense and striking absorption band at 1384 cm-1 (v3); which proved 

incorporation of free nitrate anion in interlayer of LDH. The presence of the band centered at 

827 cm-1 is caused by (v4) mode of the same anion (WANG; WANG, 2007; YANG et al., 2015). 

A small shoulder occurred at around 3000 cm-1 because of hydrogen bonding between water 

and intercalated anion (CAVANI et al., 1991). OH stretching (vO-H) from both water molecules 

and hydroxyl groups were characterized by a broad band at 3435 cm-1 followed by an adsorption 

band at 1635 cm-1; indicating the presence of interlamellar water and angular deformation of 

water molecules connected to nitrate anions in interlayers (BENSELKA-HADJ 

ABDELKADER et al., 2011; BENICIO et al., 2017).  
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Figure 5.2 FTIR spectra of synthesized LDH 

The thermogravimetric analysis (TGA) is a robust tool to estimate the total water content  

(both adsorbed and interlayer) and to observe the hydroxyl group plus anion loss at higher 

temperature. The TGA curve (Figure 5.3) showed the final remaining residue to represent 

57.36% of the initial mass (36.785 mg) under 1200℃. 19.2% mass was lost up to 303℃, which 

corresponds to the surface adsorption and interlayer water loss, by which the number of water 

molecules was determined. Two endothermic effects within this temperature range confirmed 

total water loss (BENÍCIO et al., 2017). Increasing temperature to 730℃ caused a decrease of 

sample mass by 20.1%, assigned to the loss of nitrate anions (decomposed to NO2) and 

dehydroxilation of brucite layers followed by an endothermic event in the DTA curve 

(NAKAGAKI et al., 2016). By the end of TGA, 56.35% of LDH had left as metal oxides and 

the small exothermic effect after 745℃ was attributed to formation of metal oxides as MgO 

and probably MgFe2O4, as demonstrated by Ferreira et al. (2004), Olfs et al. (2009) and 

Abdelkader et al. (2011). Given these results, including x=0.32 and calculation of water content 

through TGA analysis, the chemical formula of the synthesized LDH was concluded to be 

[Mg0.68Fe0.32 (OH)2](NO3) 0.32 1.17H2O. The ratio of Mg and Fe cations in the solid particles 

was equal to that of the initial solution.  
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.  

Figure 5.3 TGA and TDA curves of synthesized LDH 

 

5.3.2. Nitrate release studies 

Figure 5.4Error! Reference source not found. shows how the nitrogen was released 

from the milled LDH particles in different solutions. It was calculated that 4.11 wt. % of LDH 

was composed of nitrogen, similar to findings by Noh et al. (2015). There was high affinity for 

LDH to release the nitrogen equilibrated with chloride or sulphate (Figure 5.4 a) as the fraction 

of nitrate released was always high in the equilibrium experiments. These results were in good 

agreement with Komarneni et al. (2003) and Olfs et al. (2009), who concluded that the total 

amount of nitrate in LDH synthesized by x=0.33 was exchanged by sulphate or chloride rapidly. 

The type of background electrolyte effectively changed the release of nitrate from LDH as Cl 

from CaCl2 was replaced by total nitrate inside the LDH in all ionic strengths. The behavior of 

nitrate release was evaluated under two conditions: lower (0.01 M) and higher (0.1 and 0.5 M) 

ionic strength (Figure 5.4 a). According to the results reported by Noh et al. (2015), the presence 

of  

Cl- in the electrolyte facilitated nitrate to leave LDH types with a high charge density (like in 

our case, x=0.33). This is illustrated in Figure 5.4 a for an ionic strength of 0.01 M. For higher 

ionic strengths (0.1 and 0.5 M), it seems there was a relation between the mass of anions in the 

electrolyte solutions and release of nitrate from LDH, as nitrate release increased in the order 

CaCl2>K2SO4>KCl, corresponding to an increase in the mass ratio of anion to total background 

electrolyte mass from 0.47 to 0.55 and 0.64, respectively. This finding is opposite to previous 

ideas that higher charge density of anion increases their adsorption by LDH. 
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The fraction of released nitrate from the 0.01 M CaCl2, K2SO4 and KCl solutions 

measured at 15, 30, 60, 90, 120, 180 and 240 minutes is shown in Figure 5.4 b. This figure 

shows that an exponential function could predict the nitrate release fraction with RMSE of 

0.015, 0.03 and 0.02, respectively, while obtained K values for the exponential function were 

0.01, 0.015 and 0.017, respectively, for the nitrate desorption from LDH suspended in solutions 

of KCl, K2SO4, and CaCl2. The nitrate release sharply increased with time up to the second 

hour, until equilibrium was reached. The initial rapid step (the first two hours) illustrates the 

fast exchange between nitrate and chloride or sulphate, where sulphate is replaced faster. This 

implies that in the case of a soil solution composed of a variety of anions, nitrate retention in 

LDH will be very low.  

Consequently, the release of nitrate loaded in LDH particles is fast, occurring in less  

than 4 hours in batch experiments, and therefore may not be expected to provide slow release 

conditions for uptake by plant roots. Moreover, LDH contain no more than ca. 5 wt. % of 

nitrogen (KOMARNENI et al., 2003) and around 30 to 50% of Mg, Al or Fe, all heavy metals 

which are potentially toxic contaminants. 

 

  

(a) (b) 

Figure 5.4  Nitrate release fraction from LDH particles dispersed in of KCl, K2SO4, and CaCl2solutions 

with 0.01, 0.1 and 0.5 mol L-1 ionic strength performed in the equilibrium (a) and in time 

dependent (kinetic) experiments (b) 
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5.3.3. LDH dissolution  

 

Although LDHs are stable at pH values normally found in soils; one should consider 

that acidic root exudates can decrease locally the pH (JOBBÁGY; REGAZZONI, 2011). 

Dissolved fraction of Mg in suspensions with different initial mass and pH is shown in Figure 

5.2. No dissolved Fe was observed in any scenario. Up to pH 4; less than 5% of Mg was 

dissolved in suspensions with higher initial mass (0.01; 0.1 and 0.2 g) while twice as much was 

dissolved in a suspension with 0.05 g LDH. At pH 3; 25% of total Mg in LDH was dissolved 

in H2SO4 (2M) when 0.05 g LDH was initially mixed. However; Mg dissolution in concentrated 

suspension (0.2 g LDH) did not exceed more than 5% within the range of pH used in our 

experiments. The cation dissolution is associated with proton consumption. The Fe(III) 

(hydroxide) enriched material precipitated within the whole range of pH (3-9) because of 

extremely low dissolution rate considering solubility product (Ksp) of Fe(OH)3 equal  

to -37 (MEIGHAN et al., 2008). Hence dissolution of LDH is non stoichiometric and governed 

by Mg dissolution (SCHECKEL et al., 2000). 

 

 

Figure 5.5 Dissolved fraction of Mg of LDH as a function of initial mass of LDH and pH of electrolyte 

background 
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5.3.4. Breakthrough curve analysis of temperate soils 

 

In soil columns, the fast release of loaded nitrate in LDH, representing 4% of total LDH 

mass, was confirmed by the early peak of relative mass shown in Figure 5.5. The earliest peaks 

of relative mass, at about 0.5 relative pore volume, were observed in columns filled with 

Aarslev and Fensholt soil material. Generally, the asymmetric shape of the BTCs associated 

with a long tail for the Fensholt soils is probably related to their higher organic matter content 

and smaller sand fraction (Table 5.1). Intense organic farming in Fensholt region increases its 

organic matter content. BTC of columns from Foulum and large-grain sand (L) were alike, with 

fast recovery in the sandy Foulum soils.  

It can be inferred that soil type and field management are determining factors for the 

retardation of nitrate leaching, more impacting than the use of LDH particles, because soils with 

higher organic matter contents showed longer tails in their BTC, in agreement to results by Jin 

et al. (2016). The total amount of intercalated nitrate available in the surface spread LDH was 

removed after washing with 1.5 to 2 pore volumes, therefore LDH particles seem inefficient as 

slow release fertilizer. The concentration of Mg in the collected leachates were below the limit 

of detection, which agrees with the result of the batch experiments where a low dissolution rate 

of Mg in an environment at medium pH (5.8 to 7.2) was observed (Figure 5.5).  

 

Figure 5.6. Breakthrough curves showing the relative loaded nitrate concentration (m/m0) as a function 

of the amount of leachate collected relative to the total pore volume (V/PV) after applying 

3 g of LDH on the soil surface of columns with material from five Danish soils 
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For the second purpose of study, determining the retardation of nitrate by LDH particles,  

Figure 5.7 demonstrates the breakthrough curves of nitrate applied before and after addition of 

LDH, where Figure 5.7 a just gives information about the columns filled with pure small and 

large-grain sands (S and L) and Figure 5.7 illustrates BTCs for soils collected from fields in 

Denmark. A good agreement was obtained for the shape of replicate BTCs.  

Results obtained using STANMOD (VAN GENUCHTEN et al., 2012) used to estimate 

equilibrium or non-equilibrium transport parameters are shown in Table 2. Symmetrical BTCs 

are typical in scenarios with a conservative tracer at steady rate in the absence of an immobile 

phase or a physical non-equilibrium. Sand columns (S and L) showed bell-shaped BTCs 

because of their high mobile water content, which results from low structural heterogeneity 

(GONZÁLEZ-DELGADO; SHUKLA, 2014). In these columns, (C/C0)max occurs at about  

1.1-1.3 VR for both the small and large grain size sands (S and L). After the addition of LDH 

on the surface of these sand columns, the reduction in (C/C0)max was just 3.5 and 6.8%, 

respectively. The reduction of nitrate leaching reported in this study, and also Halajnia et al. 

(2016) using LDH particles, is smaller than the strong nitrate removal ability of Purlite resin 

(GUPTA et al., 2012) or high capacity of nitrate reduction by Fe nanoparticles (KIM et al., 

2012). Equilibrium ADE perfectly describes the BTCs while LDH addition increases 

dispersivity (λ) by respectively 0.13 and 0.03 cm in both sand types S and L (Table 5.2).  

Characteristics of BTCs were different in columns with real soil material which present 

a non-uniform particle size distribution and contains organic matter. In field soil scenarios, 

nitrate retention did not change significantly as (C/C0)max declined by 5, 6 and 9 % for Aarslev, 

Fensholt and Foulum, respectively. This small reduction was not caused by the LDH, as the 

Fe(OH)3 enriched materials and Mg are accumulated on the soil surface and were never 

transported down for more than a few millimeters. However, the high sand content in Foulum 

soils made their BTC shape and trend similar to the pure sands (L) and (S), with a sharp peak 

and short tail. Recovery of nitrate in this column after LDH application was reduced by 14%, 

whereas dispersivity increased from 0.064 to 0.079 cm (Table 5.2). 

The asymmetry in BTCs for Aarslev and Fensholt soil columns is probably caused by 

preferential flow and the presence of immobile water. Nitrate transport in Fensholt and Aarslev 

is limited by diffusion, as their dispersivity is larger than in Foulum soil and the pure sands, 

resulting in a flow dominated by advection (Table 5.2). In the Fensholt soil, with 5% of organic 

matter, the peak was observed earlier than 1 relative pore volume due to anion exclusion 
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because of negatively charged particle surfaces (PIÑÓN-VILLARREAL et al., 2013). As a 

result, this soil did not show a significant reduction in nitrate loss because recovery was constant 

(Table 5.2). Nevertheless, LDH reduced the recovery of nitrate by 13% in the Arslev soil, and 

its BTC was skewed to the right resulting in an increase in VR BT10 and VR BT50 (relative pore 

volume when 10 and 50% of accumulated C/C0 occurred) by 0.1 and 0.3 (Table 5.2). Hence, 

non-equilibrium CDE explained the variation of C/C0 for this soil with non-equilibrium (β) and 

mass transfer (ω) coefficients of 0.35 and 0.09 when LDH had been applied  

(Table5. 2). A similar tail on the right side of the BTC and also 15% reduction in (C/C0)max  was 

observed by Sepasbaksh et al. (2007) in a saturated condition column experiment filled with 

loamy soils amended with 8 g kg-1 zeolite. The average pH of the collected leachate was 

6.4±0.3, causing positive sites for nitrate adsorption. Long tail and larger residence times are 

other characteristics of these BTCs. 

 

  

Figure 5.7 Breakthrough curves of (a) sand (L; large sand, S: small sand) and (b) real soil packed 

columns (with the name of locations as mentioned in Table 5.1), showing the relative loaded 

nitrate concentration (C/C0) as a function of the amount of leachate collected relative to the 

total pore volume (V/PV) after applying 3 g of LDH on the soil surface of columns with 

material from five Danish soils before and after addition of LDH 
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Table 5.2.  Transport parameters obtained with STANMOD for temperate soil columns with and 

without (control) LDH  

Soil  (C/C0)max Recovery VR (C/C0)max VR BT10 VR BT50 V(cm/h)† λ(cm)† β† ω† R2 

Sand(L) 

Control 0.17 100±0.02 1.18 0.92 1.18 2.72 0.184 - - 0.978 

LDH 0.13 96±0.04 1.31 0.92 1.27 2.52 0.312 - - 0.966 

Sand(S) 

Control 0.20 100±0.009 1.28 0.98 1.20 2.29 0.105 - - 0.989 

LDH 0.18 100±0.004 1.28 1.00 1.24 2.20 0.134 - - 0.982 

Foulum 

Control 0.21 95±0.04 1.03 0.89 1.06 2.54 0.064 - - 0.981 

LDH 0.18 81±0.06 1.03 0.95 1.12 2.64 0.079 - - 0.923 

Fensholt 

Control 0.08 100±0.08 0.99 0.73 1.15 2.36 0.77 - - 0.975 

LDH 0.07 98±0.04 1.18 0.85 1.33 2.02 0.78 - - 0.957 

Arslev 

Control 0.09 80±0.03 0.95 0.74 1.13 2.29 0.48 0.56 0.05 0.884 

LDH 0.08 67±0.04 0.95 0.83 1.43 1.32 0.31 0.35 0.09 0.986 

V: average pore water velocity (cm/h); λ:dispersivity (cm); β: non-equilibrium partitioning coefficient; ω: mass transfer coefficient  

 

5.3.5. Breakthrough curve analysis of tropical soils 

 

The experiments performed in columns with tropical soil material from Brazil (Figure 

5.8) agreed with those carried out with Danish soils, suggesting that the LDH does not provide 

a gradual release of nitrate. The experiments with material from two soils of clayey (B1) and 

sandy loam (B2) textures started with tracer application and an almost full recovery of nitrate 

was observed (95% in the clay soil 98% in the sandy loam soils, Figure 5.8). Subsequently, 

LDH was applied to the soil surface. Differences between relative concentrations of replication 

in Figure 5.8 a (soil B1) when 20, 50 and 100 mg of LDH was added was due to large resolution 

measurement of nitrate in the collected pore volumes however both replicates behave in the 

same way in terms of nitrate mass balance in these steps. It should be noted that the CDE curve 

fitting was not carried out for these experiments because soils columns were small and the wall 

effect would be significant.  

There was an insignificant change in relative pore volume (less than 0.3 VR) required to 

remove nitrate tracer between initial and end (the first and last five VR in Figure 5.8) of nitrate 

application, while the recovery of nitrate was around 4% lower for the latter. Recovery of 

removed intercalated nitrate was 94±2% on average for the sandy loam soil in all steps.  
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The nitrate mass balance after LDH application observed for the clay soil (Figure 5.8b) was 86, 

82 and 84% respectively when 20, 50 and 100 mg LDH was spread. The ending tracer run was 

associated with (C/C0)max of 83%, which is 12% less than corresponding value for the primary 

tracer test. Removal of nitrate from each step in clay soils required on average 2.1, 2.2, 2.7 and 

3.2 VR respectively for 20, 50, 100 and 100 mg of LDH and there was about 1.8 VR increase in 

removal of the last nitrate tracer compared to the initial nitrate tracer application. 

  

 

  

 
(a) (b) 

Figure 5.8 Relative nitrate concentration (C/C0) as a function of the amount of leachate collected 

relative to the total pore volume (V/PV) after application of different doses of LDH (arrows 

show when and how many mgs of LDH was applied) in various steps in clay (B1: a) and 

loamy sandy soil (B2: b)  

Figure 5.9Error! Reference source not found. shows XRF intensity counts of Mg and 

Fe s, detected by scanning of three lines for each soil column filled with tropical soil material. 

High surface accumulation of LDH cationic components was expected, firstly because a very 

low dissolution rate of Mg and Fe was already verified in batch experiments (Figure 5.5) and 

secondly because of the implementation of experimental measures similar to field conditions, 

including step addition of LDH on the surface and establishment of an unsaturated zone.  

On average, the highest peaks of intensities for either Fe or Mg were found in the top 

first cm of the soil column, around 5 mm, showing a strong retention of LDH particles at the 

end of the leaching experiment after applying about 55 pore volumes. A high retention of metal 

components of LDH particles added to soil columns was recently reported by Jiang et al. (2019), 

especially when ionic strength for potassium increased from 1 to 100 mM. A very low vertical 

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

C
/C

0

VR=V/PV

Rep1

Rep2

20mg 50mg 100mg 100mg Nitrate

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60

C
/C

0

VR=V/PV

Rep1

Rep2

20mg 50mg 100mg 100mg Nitrate



102 

 

transport of iron was observed by Al-Sid-Cheikh et al. (2019) using µXRF line scanning when 

nano magnetite particles were applied with water flow on top of soil columns filled with 

wetland organic–rich soil. In case of long term penetration of the remained amorphous form of 

iron oxyhydroxides, they can be accumulated on root surfaces creating a barrier for elemental 

adsorption (TRIPATHI et al., 2014). The net intensity of Mg was lower than Fe due to intrinsic 

elemental sensitivity (RODRIGUES et al., 2018). The clay fraction of weathered tropical soils 

is mainly composed of 1:1 clay minerals and iron and aluminum oxides and hydroxides, 

explaining the intensities for Fe recorded for clay soil (Figure bottom) to be higher than the in 

sandy soil material (Figure 5.9: top) (PEREIRA et al., 2019). 

  

  
 

Figure 5.9. Mg (left) and Fe (right) intensities obtained from line scanning of two soil columns; sandy 

loam (B1: top) and clay (B2: bottom) by EDXRF; (L1; L2 and L3 are scanned lines) 
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5.3.6. LDH in practice  

 

Recalling the chemical composition of LDH ([𝑀1−𝑥
2+ 𝑀𝑥

3+(𝑂𝐻)2]𝐴𝑥/𝑚
𝑚− 𝑛𝐻2𝑂); 

containing Mg; Al or Fe and nitrate with 0.167≤x≤0.33 and 0≤n≤5 (water molecule numbers); 

the ratio of nitrogen; divalent and trivalent cations to the whole mass of LDH are shown in 

Table 5.3. The most optimally synthesized LDH contains a maximum of 6% (mass-based) of 

nitrogen; whereas Mg and Al represent about 50%. These high contents of Mg and Al represent 

a problem; as they may cause very strong fixation of nutrients like phosphate (VILLEGAS et 

al., 2003; TEZUKA et al., 2004; GÉRARDIN et al., 2005; MA et al., 2019).  

 

Table 1. LDH components ratio to the total mass of LDH 

LDH N/LDH M(II)/LDH M(III)/LDH 

Mg-Fe-NO3 2.6-5.2 13.6-27.4 10.5-20.8 

Mg-Al-NO3 2.8-5.8 14.7-29.3 5.3-11.3 

 

In conventional fertilization; around 120 kg N ha-1 is annually applied on farmlands. 

Considering a soil bulk density of 1300 kg m-3 and a rooting depth of 30 cm; this amount is 

equivalent to 31 mg N kg-1. Applying the same amount of N in the form of LDH; either Mg-Fe 

or Mg-Al based; requires in between 2 to 4 tons LDH ha-1; thus introducing 400 to 1050 kg Mg 

and 230 to 478 kg of Fe or Al; depending on x of LDH with no intercalated water.  

An 80% reduction in nitrate leaching reported in Torres-Dorante et al. (2009) and 

Halajnia et al. (2016) due to application of 10 and 20 g LDH kg-1 is on one hand in contrast to 

our findings that show only a 10 to 30% reduction due to tracer like behavior of nitrate and 

inactivity of LDH residues. On the other hand; 10-20 g LDH per kg of soil is equivalent to 

application of 39 to 78 ton LDH for a one-hectare field with 30 cm root zone which is associated 

with metal accumulation and the cost of LDH synthesis become significant at larger scales. 

Accumulation of large amount of metals as byproduct of LDH and their possible leaching 

depending on soil structure and rainfall intensity to groundwater along besides increasing 

phosphate fixation potential due to the increase of Al or Fe contents in the soils are possible 

negative effects. Compared to the inexpensive or even free sources of nitrogen fertilizer as 
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manure or urea from livestock; the justification of using LDH as promising material for large-

scale use in agriculture apparently cannot be confirmed based on leaching reduction and needs 

more investigation.  

 

5.4. Conclusion 

The application of layered double hydroxide as potential slow release fertilizer is 

discussed in this study through batch and soil column experiments with soils from temperate 

and tropical areas. The results for case studies here provided main conclusions: 

(i) nitrogen loading capacity of LDH is between 3 to 7 % of the total mass of LDH. 

(ii) More than 90% of the whole nitrate loaded in LDH particles composed of Fe and 

Mg is released less than 4 hours confirmed by kinetic and equilibrium batch 

experiments. 

(iii) Regardless of concentration of LDH in acid solution with pH between 2.5 to 5; Fe 

cannot be dissolved and at most 25% of the total Mg in LDH can be dissolved. 

(iv) The maximum leaching mitigation of nitrate due to surface application of LDH 

was 14% in sandy loam temperate soils (Denmark) and no change in recovery of 

nitrate was observed in tropical soil by addition of LDH.  

(v) High surface accumulation of LDH iron rich residues was confirmed in the top 

few millimeters of column by line scanning of soil columns after multi step 

application of LDH. 
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6 Final Remarks   

 

In conventional agriculture, the fast-downward movement of nitrate into the soil makes farmers 

applying fertilizers more frequently to supply soil demands, which results in groundwater 

contamination. But what if the required amount of nitrate for plant is released steadily or synchronized 

with crop demand? This is the main idea of slow release fertilizer, where the compounds are supposed 

to be released at a much slower rate, so the farmer can avoid waste of resources and environmental 

contamination. However, in this technique important factors that influence the release, including spatial 

and temporal variability of soil hydraulic and chemical properties and variable climatic conditions are 

mostly neglected. Slow release fertilizers with variety types of organic and chemical coating materials 

are designed under laboratory conditions and then applied to field to be validated. As this process can 

be costly, using calibrated computer models can cut the cost of experimental trials or at least provide a 

reliable experimental design considering more influential parameters that can be controlled directly in 

the field. Therefore, in this thesis, we firstly discussed the importance of soil hydraulic properties on 

drainage under rainfed farming, upon understanding this importance we presented machine learning 

models combined with inverse modelling to obtain soil hydraulic properties. Later on we showed how 

numerical modeling using SWAP extended with a nitrogen module can be used to design numerical 

experiments in order to determine the best possible slow release fertilizer adopted to local soil hydraulic 

properties and climatic conditions. Finally, layered double hydroxide particles loaded with nitrate as 

future slow release fertilizers were synthesized and used for batch and soil column experiments filled 

with soils from temperate and tropical areas to explore their nitrate retention capacity especially under 

flow condition. These consecutive steps during this PhD project concluded in the below results: 

➢ A soil drainability index (SDI) was established that could be a possible indicator to predict 

annual drainage from bare soils in the state of Sao Paulo. This index estimates bottom drainage 

using soils hydraulic function and saturate water contents of different layers in soil profile. SDI, 

precipitation and reference evapotranspiration together can be used to accurately predict 

monthly drainage of the bare soil using random forest method. This robust prediction of monthly 

drainage using machine learning methods can be obtained under planting while using SDI, 

precipitation and potential transpiration as predictors. 

➢ The use of an automatic drip infiltrometer (ADI) allows a quick method to estimate soil 

hydraulic functions, especially in the wet range. The experimental observations of ADI 

including hydraulic conductivity at different pressure heads (K(h)) were combined with the 

water contents of the drier range (h <-100 cm) of the water retention curve estimated using 

machine learning method inversely modelled with Hydrus 1D. The final soil hydraulic 

properties of soil columns were mostly in good agreement with observed values.  
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➢ The SWAP 1D model extended with a nitrogen module allowed to evaluate the efficiency of 

application of slow release fertilizer (SRF) with different half-lives (10, 20, 30 and 40 days) for 

cultivation of summer maize in Piracicaba. The numerical modeling results showed that 

variation in yield and leaching depends on soil type and climatic condition. For example, SRF 

with a half-life of 40 days on average reduced the yield for maize cultivated in clay soils by 

about 300 kg ha-
 

1. 

➢ The nitrate contained in layered double hydroxides (LDH) can be released within a few hours 

under conditions of soil water flow. The remaining metal components may then be accumulated 

on top of the soil profile, potentially to be washed by erosion and end up in surface water. LDHs 

are also not able to retain the external nitrate sources added to soil through fertilization, as other 

competitive anions are likely to occupy the available sites. Therefore, potential application in 

agricultural management of LDH-based fertilizers seems cumbersome. 

There are several possible follow-ups of this thesis research in order to assess the potentials of 

slow release fertilizers and influential factors. On the other hand, layered double hydroxides are a 

trending topic requiring more attention and systematic research depending on the target of LDH usage. 

At the end, some recommendations for future studies are: 

➢ Applying ADI experiments for Brazilian soils using large samples to incorporate structure of 

the soil in soil hydraulic properties measurement.  

➢ Generating maps of soil hydraulic properties using the dataset collected in the first 

recommendation in order to perform numerical experiments using SWAP to model crop 

cultivation in the region under various hypothetical nitrogen fertilizer application including slow 

release fertilizer. 

➢ Performing of finite element Monte Carlo numerical simulation of hypothetical slow release 

fertilizers defined by their diffusion coefficient and coating thickness in order to explore the 

release of nutrients out of fertilizers granules.   

➢ Investigating the available organic matter compounds instead of mineral elements to coat nitrate 

fertilizer synthesizing slow release fertilizer and determining its sensitive parameters such as 

thickness of coating, and effect of soil water content and soil chemical composition on the 

release of nitrate under field trials. 

 

 


