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make it the bull when he first charges in 
 

and remember the old dogs 
who fought so well:  

Hemingway, Celine, Dostoevsky, Hamsun. 
 

If you think they didn't go crazy 
in tiny rooms 

just like you're doing now. 
(...) 
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ABSTRACT 

 

LEMOS, L. N. Integrative and in silico modeling of multi-omics data of Archaea and 

Bacteria phyla in Amazon soils. 2019. 111 p. Tese (Doutorado em Ciências) - Centro de 

Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 2019. 

 

A large scale of multi-omics datasets, that have been generated in various microbiome 

projects, such as the “Dimensions US-BIOTA-Sao Paulo: Collaborative Research: Integrating 

Dimensions of Microbial Biodiversity across Land Use Change in Tropical Forests (FAPESP  

2014/50320-4)”, require a quantitative interpretation of the interactions among the three 

dimensions (phylogenetic, genetic and functional) of microbial diversity. This thesis was 

based on the need to use an integrated computational approach to investigate the role of 

Bacteria and Archaea in Amazon soils, using massive sequencing technologies, 

bioinformatics and reconstruction of genomes from metagenomes (MAGs) to understand not 

only the diversity, but also the evolution, metabolism and biogeography distribution. Firstly, 

in the Chapter 1 we introduced an overview of the main topics covered in this thesis. Then, 

we outlined the main approaches applied for microbiome studies based on high-throughput 

sequencing technologies and we introduced the most commonly used strategies for 

bioinformatics analyses and data integration. In the third chapter, the application of an 

integrative approach allowed us to discover that the nitrogen-related traits associated with 

nitrification in Archaea (e.g. ammonia oxidation) metabolism seems to be a derived character 

and emerged late in the diversification of the Thaumarchaeota (Archaea) group. Furthermore, 

after analyzing more than 27,000 public environmental samples, we discovered that the non-

ammonia oxidizing clade has habitat-specific subgroups (e.g. Group 1.1c is more specific for 

soils and non-saline sediments). We also described the first Thaumarchaeota genome from 

tropical soils. Additionally, in the fourth chapter we discovered that the small-sized genome 

was a trait of the new CPR/Patescibacteria (Bacteria) phyla in cattle-pasture of Amazon soils. 

We also expanded the range of environments within the radiation of this new bacterial group 

appears and highlight the importance of MAGs methods for the expansion of reference 

databases. Lastly, chapter five explored the effects of forest-to-pasture conversion and an 

increase in soil moisture levels on Archaea composition in Amazon soils. Our results 

indicated that the community alterations caused by the higher soil moisture levels are most 

pronounced in the pasture, where communities were more sensitive, enhancing the potential 

of methanogenesis, while forest may act as buffers during the rainy season and harbors more 

stable communities. This thesis highlights the importance of the use of advanced 

bioinformatics tools and integrated computational approaches for a better understanding of the 

evolutionary processes, metabolic pathways and environmental distribution of complex soil 

microbiome members. 

 

Keywords: Microbiome. Microbial Ecology. Soil microbiology. Bioinformatics. Amazon 

tropical soils.  
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RESUMO 

 

LEMOS, L. N. Modelagem integrativa e in silico de dados multi-ômicos de filos de 

Archaea e Bacteria em solos amazônicos. 2019. 111 p. Tese (Doutorado em Ciências) - 

Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 2019. 

 

A enorme quantidade de dados multi-ômicos gerados em projetos de microbiomas, tais como 

o projeto “Dimensões US-BIOTA - São Paulo: pesquisa colaborativa: integrando as 

dimensões da biodiversidade microbiana ao longo de áreas de alteração do uso da terra em 

florestas tropicais (FAPESP 2014/50320-4)”, requer uma interpretação quantitativa das 

interações entre às três dimensões (filogenética, genética e funcional) da diversidade 

microbiana. O objetivo geral desta tese foi aplicar uma abordagem computacional integrativa 

para investigar o papel ecológico de Archaea e Bacteria de solos amazônicos, usando 

tecnologias de sequenciamento massivo de DNA, bioinformática e reconstrução de genomas a 

partir de metagenomas (MAGs), para entender não apenas a diversidade ecológica, mas 

também a evolução, o metabolismo e a distribuição biogeográfica. No primeiro capítulo, 

apresentamos uma visão geral dos principais tópicos abordados nesta tese. Depois, discutimos 

as principais abordagens comumente usadas em análises de bioinformática e na integração de 

dados gerados em estudos de microbiomas. No terceiro capítulo, a aplicação de uma 

abordagem integrativa nos permitiu descobrir que os traços funcionais associados a 

nitrificação, em Archaea (e.g., oxidação da amônia), pode ser um caráter derivado, que 

emergiu depois da diversificação das Thaumarchaeota (Archaea). Além do mais, analisando 

mais de 27.000 amostras ambientais, que estão depositadas em bancos de dados públicos, 

descobrimos que o grupo de Thaumarchaeota não-oxidadoras de amônia tem uma 

especificidade por determinados habitats (e.g., Group 1.1c é mais específico de solos e 

sedimentos não-salinos). Neste estudo, descrevemos pela primeira vez um genoma de 

Thaumarchaeota de solos tropicais. Adicionalmente, no capítulo quatro os resultados 

indicaram que os membros do filo CPR/Patescibacteria (Bacteria), identificados em solos de 

pastagem da Amazônia, apresentam genomas pequenos. Estes resultados também expandem a 

diversidade de ambientes dentro da distribuição deste novo grupo bacteriano. O terceiro e 

quarto capítulo destacam a importância dos métodos de reconstrução de genomas a partir de 

dados metagenômicos para a expansão dos bancos de dados de genomas de referência. Por 

último, no Capítulo 5, exploramos o efeito da conversão de floresta-em-pastagem e o aumento 

dos níveis de umidade do solo na composição de Archaea em solos amazônicos. Nossos 

resultados indicam que as alterações causadas pelos maiores níveis de umidade do solo são 

mais pronunciadas em pastagens, onde as comunidades foram mais sensíveis, aumentando o 

potencial de metanogênese, enquanto a floresta pode atuar como “buffer” durante a estação 

chuvosa e abrigar comunidades mais estáveis. Esta tese destaca a importância do uso de 

ferramentas avançadas de bioinformática e de abordagens computacionais integradas para 

uma melhor compreensão dos processos evolutivos, vias metabólicas e distribuição ambiental 

de microrganismos de microbiomas complexos. 

 

Palavras-chave: Microbioma. Ecologia Microbiana. Microbiologia de Solo. Bioinformática. 

Solos tropicais amazônicos. 
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1. INTRODUCTION 

 

 Microorganisms are widely distributed in all sorts of environments all over the planet 

and are associated with most biogeochemical cycles, influencing greenhouse gas emissions 

and nutrient cycling (OFFRE; SPANG; SCHLEPER, 2013). Soil, for example, is the most 

diverse and complex habitat on Earth and is dominated by Archaea, Bacteria, and Fungi 

(FIERER, 2017), generating a complex network with a variety of communication and 

cooperation strategies (DANIEL, 2005). At the global scale, understand the soil microbiome 

is important to develop new models for both C and N-cycling dynamics (PAJARES; 

BOHANNAN, 2015), enabling us to mitigate the greenhouse gas emissions (LAMMEL et al., 

2015).  

 The Amazon rainforest is a great reservoir of biodiversity, hosting 25% of all known 

terrestrial animal and plant species and is responsible for regulating biogeochemical cycles 

(Wilson et al., 2016) with effects on the climate (MALHI et al., 2008). The microbial 

communities of Amazon soils are important to maintain the functional equilibrium in native 

forests (MENDES et al., 2015). In addition, the Amazon floodplain forests (e.g., varzea 

forests) also show a high diversity of microorganisms that are influencing in the 

environmental functions. For example, the methane produced by the organic matter 

degradation in the Amazon floodplain forests represents 5% of the total methane emission of 

the world (DEVOL et al., 1990). Further, previous studies demonstrated that land-use change 

(e.g. forest-to-pasture conversion) can alter the abundance, composition, and diversity of 

specific bacterial taxa detected in these soils, such as Acidobacteria (NAVARRETE et al., 

2015), Verrucomicrobia (RANJAN et al., 2015), and some groups of Fungi (MUELLER et 

al., 2014). 

 Up to date, only a small number of studies have investigated the diversity of Archaea 

in Amazon soils (HAMAOUI et al., 2016; NAVARRETE et al., 2011; TUPINAMBÁ et al., 

2016). With the improvement of culture-independent sequencing methods (SPANG et al., 

2015), it has been possible to investigate the complex role of Archaea in nutrient cycling and 

linking that information with the genomic and metabolic content (EVANS et al., 2015). These 

findings have direct implications on our view of the tree of life, expanding our knowledge 

about Archaea diversity and evolution. 
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 At present, Archaea are divided into five major clades: TACK (Protearchaeota), 

Asgard, Korarchaeota, Euryarchaeota e DPANN (SPANG; CACERES; ETTENA, 2017). The 

clade TACK presents Archaea associated with the methane and nitrogen cycle, such as 

Thaumarchaeota and Bathyarchaeota. The phylum Thaumarchaeota has been identified as a 

keystone group in aerobic ammonia-oxidizing processes (nitrification) (PESTER; 

SCHLEPER; WAGNER, 2011), and includes Nitrosopumilus and Nitrosospharea genera 

(PESTER et al., 2012). Regarding Thaumarchaeota functional features, studies performed in 

controlled conditions (WEBER et al., 2015) have reconstructed near-complete genomes from 

metagenomics dataset (culture-independent methods) (BEAM et al., 2014; LIN et al., 2015) 

and have demonstrated the potential to additional metabolic features, which are not associated 

with the ammonia oxidation. Dragon and Beowulf, the first two non-ammonia oxidizers 

Thaumarchaeota, were described by Beam et al. (2014). According to Beam and 

collaborators, these microorganisms are chemoorganotrophs and capable of performing the 

oxidation of sulfide to sulfate, or fermentation and litho/organotrophic oxygen or nitrate 

reduction (BEAM et al., 2014). The third non-ammonia oxidizer (Fn1 Thaumarchaeota) was 

described by Lin et al. (2015) and has the potential to degrade long-chain of fatty acids 

(LCFA) via β-oxidation. The description of new non-ammonia oxidizing Thaumarchaeota can 

open a new world to explore the functions of this high-diversity phylogenetic group. 

 Archaea are also associated with carbon cycling and methane production 

(methanogenesis). Classical studies regarding microbial metabolism demonstrated that only 

the Euryarchaeota phylum is linked with methanogenesis (GRIBALDO; BROCHIER-

ARMANET, 2006). However, Evans and collaborators (2015), using genome-centric 

approaches, discovered a new phylum (Bathyarchaeota) with the potential capacity to produce 

methane. Since then, new genomes of Bathyarchaeota have been recovered and their genomic 

content related to ecological traits (DOMBROWSKI et al., 2017). The role of Bathyarchaeota 

in tropical soils is totally unknown. 

 On the other hand, some new Bacteria groups, such as the phyla Candidate Phyla 

Radiation (CPR)/Patescibacteria, was described recently and represented 15% of the total 

fraction of the Bacteria domain (BROWN et al., 2015; PARKS et al., 2018). To date, there is 

only one species cultivated from this taxonomic group (HE et al., 2014), and all other 

members remain uncultivated (CASTELLE et al., 2018). Although some species have the 

potential to carbon degradation (DANCZAK et al., 2017) and nitrogen metabolism 

(CASTELLE et al., 2018), the ecology and functional metabolism of CPR/Patescibacteria 

needs to be investigated. Furthermore, the CPR/Patescibacteria group can be an excellent 
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bacterial phylum to explore genomic traits associated with the genome size and adaptations in 

tropical soils. In fact, Konstantinidis and Tiedje (2004) suggested that the ecological triumph 

of the soil microorganisms are the large genome size, which could be explained by the 

availability of diverse but scarce of resources. The large genome size could be an adaptation 

to survive in a non-stable environment (DINI-ANDREOTE et al., 2012; KONSTANTINIDIS; 

TIEDJE, 2004), while more stable environments could select microorganisms with small 

genomes and less non-redundant functions (MORRIS; LENSKI; ZINSER, 2012), such as 

parasitic (e.g. Mycoplasma).  

 The use of new molecular biology techniques based on DNA/RNA sequencing has 

revolutionized the soil microbiome studies (ROESCH et al., 2007; WOODCROFT et al., 

2018). Furthermore, with the development of new software and data analysis (EDGAR, 2013; 

WU et al., 2014) have been possible to unlock the soil black box and discovery new microbial 

taxa and functions associated them (KROEGER et al., 2018; WOODCROFT et al., 2018). 

These techniques are useful to link microbial diversity to the functioning of microbial 

communities and ecosystems (KRAUSE et al., 2014) or biodiversity patterns to biochemistry 

(NELSON; MARTINY; MARTINY, 2016). However, the large amount of data that are 

generated in these studies makes bioinformatics analysis one of the main challenges to extract 

biological information and testing hypothesis from microbiome datasets (LEMOS et al., 

2017). Conceptually, the soil microbiome analysis can be performed in two individual and/or 

complementary ways: (I) metagenomic (DNA) and/or metatranscriptomic (RNA) analysis to 

study the functional traits and link soil microbial taxa to soil processes (FIERER et al., 2012), 

and (II) 16S rRNA (metaxonomics) to study the phylogenetic structure of the microbial 

community based on amplicon sequencing.  

 First of all, to quantify gene and categorical functions the availability of the reference 

gene catalogs is necessary, once the short metagenomic reads are mapped to the catalog to 

profile the taxa and gene content of each sample (QIN et al., 2010; SUNAGAWA, et al., 

2015). The reference gene catalogs can be used to rapid and multi-omic profiling of the 

metagenomic samples (LI et al., 2014) and allow discovery of functional signatures 

(FORSLUND et al., 2015). However, the cultivability of soil microorganisms is difficult, 

once we do not have all information to simulate the perfect conditions for microbial growth. 

To solve this problem, it has been proposed the reconstruction of microbial genomes from 

metagenomic data, which is divided into three main steps (WOODCROFT et al., 2018; 

SORENSEN et al., 2019). The first step is (I) the sample collection and wet-lab protocols 

(e.g. DNA extraction and shotgun sequencing). After the sequencing of the short reads, they 
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are assembled into larger contigs (II), and to cluster the final contig datasets into individual 

populations using compositional proprieties (e.g. GC content and coverage), the genome 

binning is used (WU; SIMMONS; SINGER, 2016). To check the quality of each recovered 

individual genome, some metrics can be applied (e.g. completeness and contamination). Each 

individual genome is annotated using functional genome annotation that is dependent on the 

sequencing similarity to other known gene or protein to assess the potential function. 

Additionally, a manual curation can be used to improve the annotation. Lastly, the microbial 

genome can be submitted to a database (e.g. NCBI or IMG) to storage and public access (III). 

 The phylogenetic diversity of the soil microbial community can also be accessed by 

the use of amplicon sequencing (e.g. amplification and sequencing of the 16S rRNA gene) 

(ROESCH et al., 2007). An import assumption in this type of analysis is the concept of 

Operational Taxonomic Units (OTUs) (SOKAL, 1963), or Amplicon Sequencing Variant 

(ASV), which was recently proposed to replace OTUs in the microbial diversity studies 

(CALLAHAN et al., 2017). OTU or ASV are the biological units used to estimate the 

richness and diversity of a microbial community and the robustness of their identification 

depends on multiple bioinformatics steps, that include raw data filtering, chimera 

identification, and the removal of non-biological sequences (LEMOS et al., 2017).  The 

application of the ASVs solves the problems generated by the clustering of sequencing reads 

(CALLAHAN; MCMURDIE; HOLMES, 2017). The main limitation of the use of OTUs is 

the arbitrary dissimilarity threshold to definition of OTUs (e.g. 95% or 97% of similarity), 

while the use of ASV can control, model, and correct Illumina sequencing errors and 

distinguish sequence variants at one nucleotide of difference (CALLAHAN et al., 2016). 

Some computational pipelines were published using this concept, but with differences in the 

way to correct the sequencing errors. For example, DADA2 generates a trained parametric 

error model to correct and collapse the sequence errors into ASV (CALLAHAN et al., 2016). 

On the other hand, UNOISE3 applies a one-pass clustering strategy with two parameters pre-

defined by the author to generate ‘zero-radius ASV’ (EDGAR, 2016). One limitation of these 

computational strategies is that they are only applied to Illumina sequencing reads and are not 

recommend to Ion Torrent, PacBio or other sequencing technologies. 

 This thesis was based on the need to use an integrated computational approach to 

understand the ecology and evolution of Archaea and Bacterial in Amazon soils, using 

massive sequencing technologies, reconstruction of genomes from metagenomes and 

microbial phylogenetic marker genes (e.g. metataxonomics) to understand not only the 

diversity, but also the evolutionary history, potential metabolism and biogeography 
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information. Firstly, in Chapter 2, we outlined the main approaches applied for microbiome 

studies based on high-throughput sequencing technologies and we introduced the most 

commonly used strategies for bioinformatics analyses and data integration. Thus, in  

Chapter 3, the application of an integrative computational approach allowed us to discover 

that the nitrogen-related traits associated with nitrification in Archaea (ammonia oxidation) 

metabolism seems to be a derived feature and emerged late in the diversification of the 

Thaumarchaeota group. Furthermore, after analyzing more than 27,000 public environmental 

samples, we discovered that the non-ammonia oxidizing clade has habitat-specific subgroups 

(e.g., Group 1.1c is more specific of soils and non-saline sediments). In Chapter 4, we 

discovered that the small-sized genome is a trait of the new CPR/Patescibacteria phyla in 

thawing permafrost and cattle-pasture soils, and we also expanded the range of environments 

within the radiation of this new bacterial group. Our data also highlight the importance of 

binning methods for the expansion of RefSoil database. Additionally, Chapter 5 was 

complementary to understand the forest-to-pasture conversion and the increase of soil 

moisture levels impacts on the Archaea community composition in amazon soils. 

 

1.1. Hypothesis 

 

 The Study 1 (Chapter 3) presented in this thesis sought to test the hypothesis that the 

non-ammonia oxidizing Thaumarchaeota shows a heterotrophic metabolism and could be 

evolved from thermal to moderate temperature habitats (e.g. soils and sediments), and then 

originated the ammonia-oxidizing Thaumarchaeota. The Study 2 (Chapter 4) tested the 

hypothesis that complex microbiomes, such as those present in soil ecosystems, favor 

microorganisms with larger genomes and accessory genes, due their greater metabolic 

versatility, which allow them to survive and acclimate in a changing-environment with 

diverse but limited resources. In addition, the Study 3 (Chapter 5) tested the hypothesis that 

the forest-to-pasture conversion and the increase of soil moisture levels modify the Archaea 

community composition. 
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1.2. Objectives 

 

1.2.1. General objective 

 

 The general objective of this thesis was to use an integrative computational approach 

to investigate the evolution, potential metabolic pathways, and biogeographical distribution of 

Archaea and CPR/Patescibacteria (Bacteria). The integrative computational approach was 

described with details on Chapter 3 and complemented on Chapter 4 and Chapter 5. 

 

1.2.2. Specific objectives 

 

 To achieve the general objective of this thesis, the following specific objectives were 

considered: 

 

I. To infer the evolutionary process, potential metabolism, and biogeographic distribution of 

the Thaumarchaeota (Archaea) group, by applying an integrative computational approach 

based on bioinformatics methods, such as metagenome assembly and binning, and the use of 

public databases (e.g. Earth Microbiome Project). 

 

2. To explore the genome size features of soil microorganisms, by applying an integrated 

meta-analysis of Amazon soil metagenomes, and public available genomes and metagenomes. 

 

3. To determine how the Archaea community composition responses to long-term (land-use 

change) and short-term (soil moisture level alterations) disturbance in Amazon soils. 

 

1.3. Structure of the thesis 

 

 This thesis comprises five chapters and introduction and four chapters presented in 

scientific manuscript format written in English language. The supplementary materials 

indicated in each chapter are available in the Appendix section. 
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2. BIOINFORMATICS FOR MICROBIOME RESEARCH: CONCEPTS, 

STRATEGIES, AND ADVANCES1 

 
 

ABSTRACT 

 
 

Advances in next-generation sequencing technologies allow comparative analyses of the 

diversity and abundance of whole microbial communities, and of important ecosystem 

functional genes, at far greater depths than ever before. However, the current major challenge 

for the use of this immense amount of genetic information is undoubtedly how to convert the 

information into rational biological conclusions. As an attempt to solve this issue, we now 

rely on a set of complex computational/statistical analyses, the use of which, however, could 

be a drawback for most researchers in the biological sciences. In this chapter, we outline the 

main approaches applied for microbiome studies based on high-throughput sequencing 

technologies and we introduce the most commonly used strategies for data handling, sequence 

clustering, taxonomic and functional assignment, and microbial community comparisons.  

 

Keywords: Amplicon sequencing; metagenomics; computational methods; softwares. 

 

 
2.1. Introduction 

 

 Current scientific and technological advances have revolutionized the way that we 

usually studied microbiological resources (CARDENAS; TIEDJE, 2008). Since the 

introduction of next-generation sequencing (NGS) about 15 years ago, scientists have 

generated an unprecedented amount of genomic information, which has been cataloged in 

multiple biological databases (CHEN et al., 2010; QUAST et al., 2013; COLE et al., 2014; 

KEEGAN et al., 2016; PAEZ-ESPINO et al., 2017). However, these improvements in DNA 

sequencing methodologies arrived before we had the ability to comprehensively analyze the 

                                                 
1 This chapter was published as part of a book chapter on September 1, 2017 in the “The Brazilian Microbiome: 

Current Status and Perspectives” book.  
LEMOS, L. N. et al. Bioinformatics for microbiome research: concepts, strategies, and advances. In: PYLRO, 

V.; ROESCH, L. (Eds.) The Brazilian microbiome: current status and perspectives. Cham: Springer 

International Publishing, 2017. p. 111–123. 
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huge amount of data that was generated, and this makes bioinformatics one of the main 

bottlenecks in microbiome studies. 

 Studies that gather genomic information from single microbial populations, or even 

single-cell genomic studies, are useful for separating closely related strains, finding small 

genomic changes by comparative genomics, and disentangling the “microbial dark matter” as 

well (see more in (RINKE et al., 2013)). These kinds of studies rely heavily on genomic 

annotation, which reveals information regarding a microbe’s complete metabolic potential, 

indicating what makes this organism different from others. Therefore, precise annotation of 

the genome and standardization of the nomenclature of each identified gene (the term “high-

quality annotation” is used in the literature) is of fundamental importance. Comparisons 

between genomes may provide evidence of the biological processes involved in 

differentiation and genomic evolution, as well as revealing important aspects of the genotype 

and phenotype relationship. 

 Besides the strategies used for analyzing single populations or cells, there are also 

other approaches focused on profiling entire microbial communities. With the possibility of 

obtaining millions (or billions) of microbial sequences from complex samples  

(e.g., environmental and host-associated samples), these approaches are now widely used by 

researchers. The computational analysis of these big datasets is now allowing us to reveal the 

microbial taxonomic structure in each sample - through data analyses of microbial 

phylogenetic marker genes, e.g., rRNA 16S (metataxonomics)-and their potential functional 

traits, by shotgun metagenomic (DNA) and/or metatranscriptomic (RNA) analyses. In fact, 

the generation of data for the target sequencing of phylogenetic markers, metagenomics, and 

metatranscriptomics is now reasonably well established and several DNA sequencing 

platforms based on different technologies are currently available (GOODWIN et al., 2016). 

However, considerable computational effort is required for the processing of NGS sequencing 

data and this sudden reliance on computing has been problematic for most researchers in the 

biological sciences. Without programming skills or expertise in computer science, researchers 

who rely on computational approaches are troubled by issues such as software installation and 

efficient software combinations, the determination of parameters, and the manipulation of 

large data files. Thus, to enable the systematic processing of large volumes of sequence data, 

including the structured storage of sampled data and metadata and the standardization of data 

analyses, there are fundamental requirements both for computers with a scalable structure and 

for well-trained bioinformaticians. 
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 In this chapter, we intend to broaden readers’ views of the main bioinformatics 

strategies for studying microbes using high-throughput sequencing technologies. This outline 

includes the most commonly used approaches for data handling, sequence clustering, 

taxonomic and functional assignment, and microbial community comparison. 

 

2.2. Strategies 

 

2.2.1. Functional Profile Based on Metagenomic and Metatranscriptomic Data: ‘What 

can/do they do?’ 

 

Gene Prediction and Functional Gene Annotation 

 

 Finding the encoding genes in metagenomic DNA sequences is the first step in 

predicting protein function. This is a big challenge in bioinformatics, because the prediction 

needs to be performed on short fragmented reads (incomplete genes). Many softwares, such as 

Ophelia (HOFF et al., 2009), FragGeneScan (RHO et al., 2010), MetaGeneMark (ZHU et al., 

2010), and Glimmer-MG (KELLEY et al., 2012) have been developed to annotate short 

metagenomic reads. For example, Ophelia (HOFF et al., 2008) uses fragment length-specific 

models for gene prediction, while FragGeneScan (RHO et al., 2010) also combines 

sequencing error information and codon usage in a probabilistic model. This information 

improves accuracy in the prediction of coding sequences. 

 Methods based only on homology, such as BLASTx (ALTSCHUL et al., 1990) and 

DIAMOND (BUCHFINK; XIE; HUSON, 2015), do not use ab initio gene prediction. 

Homology-based methods allow searching for similar sequences in protein databases e.g., 

non-redundant database (nr/National Center for Biology Information [NCBI]). The similarity 

search is slower than the direct comparison of ab initio predicted sequences, because the 

sequences must be translated into the six reading frames. Currently, DIAMOND is an 

alternative for annotating metagenomic reads, because of its speed in annotating millions of 

sequences in a short time (BUCHFINK; XIE; HUSON, 2015). 
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Assigning Taxonomy 

 

 Assigning the taxonomy of short metagenomic reads may be done in two ways: (i) by 

approaches based on comparative analysis with all genome regions, including conserved 

housekeeping genes and highly variable genes; or (ii) by approaches based only on similarity 

to conserved housekeeping genes. The first option is used in most softwares, including 

homology-based methods such as MEGAN (HUSON et al., 2017). MEGAN uses an output 

BLAST score (best hits) search for taxonomic prediction from the lowest common ancestor. 

In this case, all metagenomic reads are aligned against a protein database of all microbial 

genomes deposited in the NCBI, for example. The limitation of this algorithm is the low 

speed of the BLAST search, which uses millions of reads. However, other softwares have 

been developed to align metagenomic reads against databases; for instance, DIAMOND 

(BUCKFINK; XIE; HUSON, 2015), Kraken (WOOD; SALZBERG, 2014), and Centrifuge 

(KIM et al., 2016). There are also taxonomic prediction methods based on comparisons of 

each read against a clade-specific gene marker catalog, such as that in MetaPhlAn (SEGATA 

et al., 2012). 

 

Genome Assembly from Metagenomic Data 

 

 Currently, metagenomes are analyzed by two main approaches: gene-centric and 

genome-centric. Gene-centric approaches are based on unassembled individual genomes and 

individual genes are predicted from short fragmented reads (PROSSER, 2015; BRULC et al., 

2009). On the other hand, genome-centric approaches consider individual microbial 

populations reconstructed by total metagenome assembly (ALBERTSEN et al., 2013; 

LEMOS et al., 2017). 

 Strategies based on gene-centric analysis are limited by the length of short 

metagenomic reads. Although specific software exists for gene prediction based on short 

sequences, assembling short reads into contiguous sequences (contigs) is more powerful. 

Currently, softwares such as MetaVelvet (NAMIKI et al., 2012) and metaSPAdes 

(BANKEVICH et al., 2012) subdivide short reads in graphs per k-mer lengths (De Brujin 

graphs). There are several methods for assembling short reads; however, here we focus only 

on De Brujin methods, because they are the most commonly used metagenomic assemblers. 

MetaVelvet divides the graph into sub-graphs and each sub-graph represents an individual 

genome (NAMIKI et al., 2012). 
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 Post-assembly analysis may enable improved gene prediction and functional 

annotation. Because contigs are longer than the usual short reads, they can be used for the 

reconstruction of near, partial, or complete microbial genomes of uncultivable bacteria 

(ALBERTSEN et al., 2013). This approach is known as “binning”. The main idea of binning 

is the clustering of assembled contigs into individual populations according to the 

compositional content of sequences, such as guanine-cytosine (GC) content, tetra-nucleotide 

frequency, and sequence coverage (WU et al., 2014). Some softwares available for binning 

and reconstructing individual microbial genomes from metagenomic data are MaxBin (WU et 

al., 2014), GroopM (IMELFORT et al., 2014), and MetaBAT (KANG et al., 2015). 

 

2.2.2. Taxonomic profile based on 16S Amplicon Data: ‘Who is there?’ 

 

Picking Operational Taxonomic Units 

 

 Taxonomic identification is an important step in microbial community analyses. The 

robustness of these analyses depends on a series of initial processing steps, including raw data 

filtering, chimera identification, and the removal of spurious non-biological sequences 

(SCHLOSS; WESTCOTT, 2011). An important concept used in microbial community 

analysis is the grouping of sequences into operational taxonomic units (OTUs). This concept 

was applied for the first time in botanical research by Sokal (1963), but with the advances in 

molecular methods, this concept began to be used by microbiologists (MCCAIG; GLOVER; 

PROSSER, 1999). Multiple DNA sequences are clustered into an individual OTU by an 

arbitrary level of sequence identity (for example, 97% identity roughly representing genus and 

95% identity representing family) (SCHLOSS; HANDELSMAN, 2005). The great advantage 

of grouping sequences into OTUs is the reduction of computational needs, once the number of 

sequences is reduced by picking a representative sequence from a pool of sequences in an 

OTU. Although this concept is widely applied and accepted by the scientific community, its 

application is questionable, because the similarity cutoffs applied to partial 16S gene 

sequences have no biological meaning and different biological entities present different 

identity levels. However, the lack of a better approach to deal with this issue justify its current 

use. 
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 The strategy of picking OTUs has been applied since the beginning of microbial 

community analysis and may be used with three different options for OTU picking: closed 

reference-based (BLAST (ALTSCHUL et al., 1990), UCLUST (EDGAR, 2010), USEARCH 

(EDGAR, 2010)), open-reference-based (UCLUST, USEARCH), and de novo (CD-HIT (Fu 

et al., 2012), Mothur (SCHLOSS et al., 2009), prefix/suffix, trie, UCLUST, USEARCH) 

(NAVAS-MOLINA et al., 2013). The closed-reference strategy is based on comparative 

identity between amplicon sequences and a reference database (e.g., Greengenes (DESANTIS 

et al., 2006). The open-reference strategy is also based on alignment against a reference 

database; however, sequences that do not cluster with the reference are subsequently clustered 

by the de novo approach. The de novo approach is used for clustering amplicon sequences by 

pairwise comparison, without the need for a reference database. These algorithms are 

implemented in different softwares and they have been evaluated by numerous benchmarking 

studies (SCHLOSS; WESTCOTT, 2011; WESTCOTT; SCHLOSS, 2015; BONDER et al., 

2012). The softwares most widely used to cluster biological sequences are UCLUST 

(EDGAR, 2010) (which is applied as a default method in the QIIME pipeline for all OTU 

picking approaches), Mothur (SCHLOSS et al., 2009) (picking OTUs by a de novo approach, 

based only on genetic distance methods), and UPARSE (EDGAR, 2013) (which uses 

USEARCH to pick OTUs by a de novo approach). However, none of these softwares or 

algorithms is free of bias, so the researcher must evaluate which algorithm or software is best 

for their dataset. For example, the QIIME pipeline keeps a large fraction of chimeric OTUs, 

inflating microbial diversity estimates (EDGAR, 2013). On the other hand, UPARSE 

(EDGAR, 2013) might discard true OTUs because of its highly stringent default filtering 

parameters, thus making a false-negative type of error (KOPYLOVA et al., 2016). Genetic-

distance methods implemented in Mothur, such as the average neighbor algorithm, seem to be 

the most robust approach (SCHLOSS, 2016), but these methods require great computational 

power, which might prevent the analysis of very large datasets in ordinary desktop computers. 

A common problem of open-reference strategies is the creation of unstable OTUs, where the 

cluster that a sequence is assigned to is affected by the number of sequences in the dataset (He 

et al., 2015). Close-reference approaches generate stable OTUs; however, a considerable 

disadvantage of such approaches is the unavailability of complete public datasets if the 

approach excludes any OTUs that are not defined in a pre-existing reference dataset. The 

choice of the best algorithm to use depends on the biological and ecological question and the 

throughput of data. 
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Assigning Taxonomy 

 

 Several methods have been developed aiming to predict microbial taxonomy based on 

partial sequences of the 16S rRNA gene. The most widely used is the naïve Bayesian 

classifier implemented in the Ribosomal Database Project (RDP) (WANG et al., 2007). With 

this method, sequences of 400 bp in length can be classified at genus level, and the method 

also uses bootstrap confidence scores to support the taxonomic assignment (WANG et al., 

2007). Other methods available are implemented in QIIME (CAPORASO et al., 2010) and 

Mothur (SCHLOSS et al., 2009). QIIME default classification uses only similarity among 

sequences to infer taxonomy (KUCZYNSKI et al., 2012). Mothur uses k-mer counting and 

the Wang naïve Bayesian classifier, similarly to the RDP method (SCHLOSS et al., 2009). 

 Few studies have been conducted to compare the performance of the taxonomic 

prediction algorithms used in microbial diversity studies. Bokulich and colleagues 

(BOKULICH et al., 2015) have demonstrated that the RDP classifier and Mothur provide the 

same results for taxonomy prediction, although the RDP classifier has the advantage of 

discovering novel taxa. The RDP (COLE et al., 2009), Greengenes (DESANTIS et al., 2006), 

and SILVA (PRUESSE et al., 2007) are the main databases used for taxonomy assignment. 

The RDP database covers 27 phyla (RDP Release 11), including those that are uncultivable 

(e.g., Bathyarchaeota archaea). Greengenes had its last update in 2013, with the 

implementation of the tax2-tree tool to transfer taxonomy to a phylogenetic tree 

(MCDONALD et al., 2012), but this database does not contain any new recently described 

phyla (HUG et al., 2016). SILVA is the most complete database, covering all phyla in its last 

update (RELEASE 132). 

 

Measuring Alpha and Beta Diversity 

 

 Several tools are available to measure the alpha and beta diversity of an ecological 

community. These include statistical packages (e.g., Vegan (OKSANEN et al., 2016)) that are 

implemented in general pipelines, such as QIIME and Mothur. Alpha diversity is the local 

diversity of a single sample and beta diversity is the diversity among different samples 

(LEMOS et al., 2011). Specific methods are available for determining each type of diversity 

(alpha or beta). Alpha diversity indexes, such as the Shannon diversity index (SHANNON, 

1948) and the Simpson diversity index (SIMPSON, 1949), measure the species richness and 

evenness of the community structure. On the other hand, beta diversity indexes are applied for 
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direct comparisons of the abundance profile or presence/absence of OTUs using distance 

metrics, either by counting methods (e.g., Bray-Curtis (BRAY; CURTIS, 1957)) or by 

phylogenetic reconstruction methods (e.g., UniFrac (LUZOPONE; KNIGHT, 2005)). The 

advantage of using phylogenetic approaches for comparisons of microbial communities is the 

possibility of using low sequence coverage. However, the use of methods based on absolute 

counting needs high sequence coverage to improve accuracy (LEMOS et al., 2011). 
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3. NEW INSIGHTS ON THE EVOLUTION, POTENTIAL METABOLISM AND 

DISTRIBUTION OF THE NON-AMMONIA OXIDIZING THAUMARCHAEOTA 

 
ABSTRACT 

 
The phylum Thaumarchaeota is an important Archaea group and almost all cultivated species 

of the class Nitrososphaeria have the capacity to oxidize ammonia. However, the use of 

experimental soil microcosm, the reconstruction of near-complete genomes from 

metagenomic data, and more recently, the cultivation of the Conexivisphaera calidus 

thaumarchaea, have been demonstrated that they also have the potential for fermentation, 

iron- and sulfur-reduction metabolism, which are not directly associated with the ammonia 

oxidation. Here, we described two new non-ammonia oxidizing Thaumarchaeota genomes 

from Amazon floodplain forest and partially thawed bog sediment. We used an integrated 

approach to investigate and complement the discussion about the evolution, biogeography and 

functional metabolism of non-ammonia oxidizing Thaumarchaeota, focusing in the species 

from soils and sediments. The evolution and potential metabolism were predicted using 

phylogenomic approaches and functional genome annotation, respectively. While the 

geographical distribution was analyzed by the public data deposited in the Earth Microbiome 

Project. Our results suggest that the non-ammonia and ammonia-oxidizing Thaumarchaeota 

might have emerged from a thermophilic environment, and the mesophilic lifestyle is a 

derived character. The ammonia oxidation metabolism also seems to be a derived character, 

appearing later in the diversification of Thaumarchaeota, reinforcing the recent findings. The 

comparative functional genome annotation indicated a potential to a heterotrophic lifestyle 

with the capability of acetate fermentation, and organic carbon and nitrogen degradation. 

Based on the analyses of more than 27,000 public environmental samples, we discovered that 

this clade has subgroups that may have habitat-specific distribution (e.g., Group 1.1c is more 

specific of soil and non-saline sediments). Our results expand previous studies, describing the 

ecophysiology of terrestrial non-ammonia oxidizing thaumarchaea and their potential role in 

the soil and sediments, as such Amazon floodplain forest and partially thawed permafrosted, 

and open new questions about the role of Thaumarchaeota in environmental samples. 

 

Keywords: Group 1.1c; Nitrification; Metagenome-assembled genomes (MAGs); Archaea; 

Sediments 
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3.1. Introduction 

 

 The phylum Thaumarchaeota is an important Archaea group and its evolution, 

biogeography and functional role in the nitrogen cycle (e.g., ammonia oxidation) has been 

investigated over the last 20 years (LEININGER et al., 2006; KÖNNEKE et al., 2005; 

TOURNA et al., 2011; KEROU et al., 2016; ALVES et al., 2018). To date (July 2019), there 

are 117 Thaumarchaeota genomes deposited in the NCBI database, which were assembled 

using cultivated-dependent methods (e.g., Nitrososphaera viennesis) (TOURNA et al., 2011), 

enrichment cultures (Candidatus Nitrososphaera everglandensis) (ZHALNINA et al., 2014), 

single-amplified genomes (SAGs) (RINKE et al., 2013) and using integrated strategies: 

cultivation and metagenome-assembled genomes (MAGs) (Candidatus Nitrosocaldus 

cavascurensis) (ABBY et al., 2018). 

 Although the evolution of ammonia-oxidizing Thaumarchaeota has already been well 

studied (ALVES et al., 2018), some discrete Thaumarchaeota classes such as Group 1.1c and 

Marine Benthic Group B, have not still been thoroughly investigated considering their 

evolutionary history, functional metabolism and biogeographical distribution. The discovered 

of Dragon and Beowulf thaumarchaeota genomes of hot-springs (BEAM et al., 2014), which 

do not have the ability to oxidize ammonia, opened new possibilities to explore the origin and 

evolution of Thaumarchaeota phylum. Further, the cultivation of the first non-ammonia 

oxidizing (non-AOA) Conexivisphaera calidus from a terrestrial acidic hot spring (KATO  

et al., 2019), showed more evidences to validate the hypothesis that the origin of 

Thaumarchaeota could be evolved from thermal to moderate temperature habitats, and then 

originated the ammonia-oxidizing Thaumarchaeota (BROCHIER-ARMANET; GRIBALDO; 

FROTERRE, 2015; HUA et al., 2018).  

 The biogeographical distribution of these discrete Thaumarchaeota groups (Group 

1.1c, Marine Benthic, and others.) also has been less explored than the ammonia oxidizers 

Thaumarchaeota. Some studies indicated that the Group 1.1c represents 29% of all 16S rRNA 

sequences in temperate acid forest soils (KEMNITZ; KOLB; CONRAD, 2007) and in acid 

forest peat soil (STOPNIŠEK et al., 2010). However, the Thaumarchaeota global distribution 

has not been reported or explored. 

 Regarding the Thaumarchaeota functional features, Dragon and Beowulf 

thaumarchaea have the potential for chemoorganotrophic and growth via the oxidation of 

sulfide to sulfate or fermentation and litho/organotrophic oxygen or nitrate reduction (BEAM 

et al., 2014). While, the Fn1 thaumarchaea, which was described by Lin et al. (2015),  
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has potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Recently, the 

cultivation of the heterotrophic Conexivisphaera calidus opened a new world to explore the 

metabolism of the non-AOA Thaumarchaeota. 

 In this context, herein we applied an integrated computational approach to explore 

multi-omics and complex metagenomic datasets. The description of two new Thaumarchaeota 

genomes guided us to infer and expand the knowledge about the evolution, metabolism, and 

biogeography of Thaumarchaeota group. Our results suggest that the non-ammonia oxidizing 

(non-AOA) Thaumarchaeota evolved in a mesophilic environment, sharing a (hyper)-

thermophile last common ancestor with the ammonia-oxidizing group. Based on the analyses 

of more than 27,000 individual environmental samples, we discovered that this clade has 

subgroups with habitat-specific distribution (e.g., Group 1.1c is specific of soil and non-saline 

sediments) and has potential roles in the degradation of the organic carbon and nitrogen, 

indicating a heterotrophic lifestyle and potential syntrophism in sediments. 

 

3.2. Materials and Methods 

 

 We developed and applied an integrative computational approach to modeling the 

evolutionary history, potential metabolic pathways and biogeographical distribution of 

Thaumarchaeota (Supplementary Figure 1). The first step was to process the raw 

metagenomic data and filter low quality reads (as described below). After, the metagenomic 

reads were assembled into contigs and binned to reconstruct individual microbial genomes 

(MAGs). Once we had the MAGs, from the taxonomic identification we retrieved all 

Thaumarchaeota genomes deposited in the NCBI database, which was not explored in an 

evolutionary and metabolic context. To regard the biogeographical distribution, we used the 

Earth Microbiome Project database and updated the taxonomy using the new version of the 

Silva database. Lastly, the manual curation by an expert team to check specific informations 

about the potential metabolic pathways was performed. During the Bioinformatics analyses 

we carry out state-of-the-art phylogenetic analysis and genome assembly from metagenomics 

data. 

 

3.2.1. Soil sampling, DNA extraction, and metagenomic sequencing. 

 

 The floodplain forest sediment was collected in the Tapajós National Forest, in the 

state of Pará, Eastern Amazon, Brazil, in the dry season (November 2015). The sampling area 

(S2 49.077 W55 02.077) is completely flooded by the Tapajós river during the wet season and 



40 

 

commonly remains flooded throughout the year. Sampling points were waterlogged, but there 

was no water column. At time of sampling, the sediments showed a pH ranging from 3,7 to 

4,1 and a temperature 37,9 to 38,1. The samples were collected at three points, stored at 4 ºC 

for chemical analysis and at -20 ºC for DNA extraction and microbial analysis. Total DNA 

was extracted in duplicate using the PowerLyzer PowerSoil DNA Isolation Kit (MO Bio 

Laboratories, Carlsbad, CA, USA) and quality was assessed using agarose gel electrophoresis 

stained with GelRedTM (Biotium, Fremont, CA, USA) and a Nanodrop 2000c 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Metagenomic 

sequencing was performed using an Illumina HiSeq 2500 platform (2 x 250 bp) (Illumina, 

San Diego, CA, USA) at Novogene Corporation, Beijing, China, resulting in more than  

155 million paired-end reads. 

 

3.2.2. Metagenomic assembly, binning and quality control. 

  

 The SICKLE software (JOSHI; FAUS, 2011) was used to remove low-quality reads 

(parameters: Phred score <30 and minimum size <100 bp), while the assembly was performed 

with Megahit (LI et al., 2015), using default parameters (Supplementary Table 1). Subsequent 

processing was performed according to Lemos et al. (2017). Briefly, contigs smaller than 

10,000 bp were removed from downstream analyses, and coverage was calculated using 

Bowtie2 (LANGMEAD; SALZBERG, 2012). Stringent length filtering parameters were used 

in order to reduce contamination and remove chimeric contigs. Binning was performed with 

MaxBin 2.0 (WU et al., 2016) and quality control metrics (completeness/contamination) were 

calculated with CheckM (PARKS et al., 2015). Taxonomy was assigned using the 16S rRNA 

gene with the RDP Classifier software (LAN et al., 2012) and the SILVA database (version 

32) (QUAST et al., 2013). Additional phylogenomic information was inferred by the GTDB-

Tk software and GTDB (Genome Taxonomy Database) (PARKS et al., 2018).  

 

3.2.3. Thaumarchaeota/Nitrososphaeria genomes in public databases. 

  

 We retrieved from the Woodcroft et al. (2018) and Parks et al. (2017) all 

Thaumarchaeota genomes. Completeness and contamination were assessed with the CheckM 

software (PARKS et al., 2015) and all genomes with completeness < 85% and contamination 



41 

 

> 5% were filtered out (Supplementary Table 2). The potential non-ammonia oxidizing 

genomes from the “basal clade” (REN et al., 2019) was identified by phylogenomic analysis 

(details below) and that from soils or sediments were used in the downstream analysis. 

 

3.2.4. Phylogenetic and phylogenomic analyses. 

 

 We selected 39 ammonia-oxiziding Thaumarchaeota genomes, the non-AOA genomes 

already described (Fn1, Beowulf, Dragon and C. calidus) and the genomes discovered by 

Rinke et al. (2013), Plominsky et al. (2018), Anantharaman et al. (2016) and Hua et al. 

(2018). However, we removed eleven genomes, which did not have a completeness > 85% 

and contamination < 5%, with the exception of Beowulf and Dragon, because they have a 

better studied and detailed metabolism (BEAM et al., 2014). We also add in this analysis one 

genome, from a partially thawed permafrosted sediment (WOODCROFT et al., 2018). 

 To reconstruct the evolutionary history of Thaumarchaeota, we used the concatenation 

of single-copy marker genes. Individual single-copy marker genes were identified using an 

HMM database described by Campbell et al., (2013) in Anvi’o software (EREN et al., 2015). 

A total of fourteen RP genes was identified in all Thaumarchaeota genomes (Supplementary 

Table 3), which include draft and near-complete genomes, and each individual gene was 

aligned using Muscle (EDGAR, 2004) and then they were concatenated. The phylogenomic 

tree was estimated using FastTree2 (PRICE; DEHAL; ARKIN, 2010). The trees were 

visualized in the iTol software (LETUNIC; BORK, 2016). 

 

3.2.5. Functional annotation of the individual genomes. 

 

 Individual Thaumarchaeota genomes were initially annotated using PROKKA pipeline 

(SEEMANN, 2014), and complemented the annotation using arCOGs (Archaeal Clusters of 

Orthologous Genes) families (MAKAROVA et al., 2007) using PSI-BLAST (e-value  

≤ 0.0005) (ALTSCHUL et al., 1997). The metabolic pathways were mapped using KEGG 

ontology implemented in BlastKOALA (KEGG Orthology and Links Annotation) 

(KANEHISA et al., 2016) with default parameters. Annotation was subsequently manually 

curated according to the guidelines described by Spang and collaborators (2012). 
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3.2.4. Meta-analysis of environmental distribution. 

 

 We re-analyzed the taxonomic assignment and updated the archaeal worldwide 

distribution of more than 27,000 samples deposited on the Earth Microbiome Project (EMP) 

(THOMPSON et al., 2017). The EMP representative OTUs (emp.90.min25.deblur.seq.fa) 

were re-assigned taxonomically using the most recent SILVA database (version 132) 

(QUAST et al., 2013) in the mothur software (SCHLOSS et al., 2009). The new OTU table 

was updated using the biom package (MCDONALD et al., 2012).  

 

3.3. Results and discussions 

 

3.3.1. Two new uncultivated non-ammonia oxidizing Thaumarchaeota 

 

 We recovered one near-complete Thaumarchaeota genome from a floodplain Amazon 

rainforest sediment metagenome (Table 1). The Amazon floodplain forest metagenome was 

assembled into 6,164,645 contigs from 156,056,159 paired-end reads (Supplementary Table 

1). To recovery the individual genomes in the computational binning step, we used only the 

contigs ≥ 10,000 bp, which included 3,113 contigs totalizing 0.04 Gbp. The maximum contig 

length was 248,272 bp. We used very stringent length-filter parameters in order to reduce the 

contamination and remove probable chimeric contigs (LEMOS et al., 2017).  

The Thaumarchaeota genome was identified using the 16S rRNA gene taxonomy (Table 1). 

This genome has 86% of completeness with 1.94% of contamination, has a size of 1.44 Mbp 

(58 contigs and 39.83 of GC content), 1,587 predicted Coding Sequences (CDS), and a GC 

content of 39.83% (Table 1). We provisionally name this MAG Saci.  

 One new, previously undescribed Thaumarchaeal MAG was retrieved from NCBI 

(July/2018), with a completeness greater than ~95% and less than ~2% contamination  

(Table 1). This MAG was reconstructed originally from partially thawed bog samples 

(WOODCROFT et al., 2018) and its size is 2.84 Mbp, respectively, and was not explored in 

an evolutionary and metabolic context. We will refer to it throughout the manuscript as Bog.  
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3.3.2. Phylogenomic analysis of non-ammonia oxidizing Thaumarchaeota 

 The reconstruction of the evolutionary history revealed the presence of three 

monophyletic groups that were supported with bootstrap values (> 95%) (Figure 1). One 

group consists of Beowulf, Dragon and Conexivisphaera calidus (Basal group I), a second 

group is related with the new genomes described here (Saci and Bog) and other (Saci, Bog, 

UBA 141, YP1 and Fn1) (Basal Group II), and a third group composed only by ammonia-

oxidizing Thaumarchaeota (Figure 1). The Basal Group I and II members do not have 

amoABC key-genes for ammonia oxidation and complete carbon fixation pathways 

(Supplementary Table 1 and REN et al., 2019). The Basal Group I is deep-branching taxa to 

the other Thaumarchaeota groups, while Saci, Bog and other (Basal Group II) are the closest 

relatives of the ammonia-oxidizing group. The phylogeny presented here highlights new data 

about the evolution of Thaumarchaeota phyla, once we corroborated the hypothesis of a 

thermophilic ancestor for the Thaumarchaeota and post adaptation to mesophilic biomes 

(BARNS et al., 1996; EME et al., 2013; ADAM et al., 2017). We also associated Beowulf, 

Dragon and Conexivisphaera calidus thaumarchaea genomes (Basal Group I) with the most 

deep-branching groups and the mesophilic lifestyle as a derived character (BROCHIER-

ARMANET; GRIBALDO; FORTERRE, 2012). Furthermore, the ammonia oxidation 

metabolism is also a derived character, appearing later in the diversification of the 

Thaumarchaeota group, as predicted by Brochier-Armanet, Gribaldo and Forterre (2012), 

which suggest that the origin of the Thaumarchaeota and Aigarchaeota (the sister group of 

Thaumarchaeota) might be emerged from a thermophilic environment and the mesophilic 

lifestyle is a derived character, and reforces the recent findings about the evolution of this 

group (REN et al., 2019). 
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Table 1. Genome features and predicted lifestyle of the non-ammonia oxidizing Thaumarchaeota species 

Genome (bin) name Saci Dragona 
 

Beowulfb Fn1c Bog d Conexivisphaera calidus 

Genome Accession  This study. 2263082000 (IMG) 2519899514 (IMG) 2558309099 (IMG) GCA_003164815 
(NCBI) 

AP018732 (NCBI) 

Habitat Floodplain forest 

sediment 
Acidic geothermal 

sediment 
Acidic geothermal mat Peatland Partially thawed bog Terrestrial acid hot spring 

Taxonomy (16S rRNA) - 
Phylum - SILVA 

Thaumarchaeota Crenarchaeota Thaumarchaeota Thaumarchaeota Thaumarchaeota Aigarchaeota 

Taxonomy (16S rRNA) - 
Class - SILVA 

SCGC AB-179 Crenarchaeota Incertae 

Sedis 
SCGC AB-179 1.1c 1.1c Terrestrial Hot Spring 

Gp(THSCG) 

Taxonomy (Phylogenomic) – 

Phylum - GTDB 
Crenarchaeota Crenarchaeota Crenarchaeota Crenarchaeota Crenarchaeota Crenarchaeota 

Taxonomy (Phylogenomic) – 

Class - GTDB 
Nitrososphaeria Nitrososphaeria Nitrososphaeria Nitrososphaeria Nitrososphaeria Nitrososphaeria 

Estimated Genome Size (bp) 1,447,552 1,485,980 1,202,119 1,716,974 2,842,388 1,593,902 

Number of contigs 58 38 110 90 115 1 

Estimated Completeness (%) 86.33 89.16 83.98 97.25 99.03 98.1 

Estimated Contamination (%) 1.94 0.97 0.97 2.91 1.94 0.00 

G+C content (%) 39.83 40.20 41.92 56.33 59.44 62.1 

Maximum scaffold length (bp) 139,074 153,490 51,712 108,222 132,590 1,593,902 

N50 contig length 30,165 59,663 11,435 33,134 45,416 1,593,902 

CDS number 1,587 1,827 1,437 1,920 3,224 1,610 

Metabolism Fermentation Fermentation or 

Organotrophic sulfur 

reduction  

Litho/organotrophic 

oxygen or nitrate 

reduction 

Fatty acid oxidation Chemoheterotrophic sulfur- 
and iron-reducing 

organoheterotroph 
a,bData from Beam et al. (2014) and JGI (Joint Genome Institute) database; cData from Lin et al. (2015) and JGI (Joint Genome Institute) database; dData from Woodcroft et al. (2018) and NCBI (National Center for 

Biotechnology Information) database. 
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Figure 1. Phylogenomic tree showing the evolutionary position of the ammonia and potential non-

ammonia oxidizing Thaumarchaeota species. The phylogenomic tree was infered using the alignment and the 

concatenation of 14 single-copy marker genes under the Jones-Taylor-Thorton model and CAT approximation 

with 20 rate categories. The new Thaumarchaeota genomes described here are assigned with a red star. Blue and 

yellow represent the potential non-ammonia oxidizing Thaumarchaeota and the green collapsed clade represents 

the ammonia-oxidizing Archaea. The nodes that showed a bootstrap support ≥95% are assigned with a black 

point in the trees 

 

3.3.3. Biogeography distribution of Archaea and non-ammonia oxidizing 

Thaumarchaeota 

 To check the biogeographical distribution of the non-ammonia oxidizing 

Thaumarchaeota, we re-analyzed the relative abundance of the Archaea groups using more 

than 27,000 samples deposited on the Earth Microbiome Project database (THOMPSON et 

al., 2017) (Figure 2). Thaumarchaeota was the most abundant Archaea group of the 

microbiomes analyzed, which include soil (non-saline), sediment (saline) and water (saline). 

These findings are in accordance to other studies (BATES et al., 2011; FIERER, 2017; 

WEBSTER et al., 2015; PETRO et al., 2017). In addition, the clade related to the ammonia 
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oxidation metabolism (Nitrososphaeria) is the most abundant Thaumarchaeota class, and more 

abundant than the Group 1.1c, Marine Benthic Group A and SCGC_AB-179 (non-ammonia 

oxidizing groups related to Basal Group I and II) (Figure 2A). However, when we checked the 

subcategories of the Soil category, we can observe that the Group 1.1c had the relative 

abundance greater than 10% in soils from Coniferous forest, Forest, Montane Shrubland, 

Temperate coniferous forest, Tropical grassland, Tropical broadleaf forest and Tropical 

Shrubland (Figure 2B). This discrepancy was associated with the presence of more than  

1,000 samples of Cropland and the absence of the Group 1.1c in these samples. The  

SCGC-AB-179 group was detected with a small proportion (0.006%)) in the Sediment  

(non-saline) samples (Figure 2C). 

 

Figure 2. Environmental distribution of the Archaea groups. (A) Relative abundance of Archaea phylum of 

Earth Microbiome Project dataset using more than 27,000 environmental samples. (B) Soil (non-saline) sub-

category. (C) Sediment (non-saline) sub-category. The taxonomy predictions were updated using RDP Classifier 

and the SILVA Database version 132 
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 The high abundance of Nitrosophaeria group may be correlated with the process of 

nitrification in soils (ZHANG et al., 2012; ALVES et al., 2013). On the other hand, the Group 

1.1c, which do not have potential to ammonia oxidizing (BEAM et al., 2014; WEBER et al., 

2015), may have functional activity in other processes, such as the degradation of long-chain 

fatty acids (LCFA) (LIN et al., 2015), and soil organic nitrogen compounds (WEBER et al., 

2015) or soil carbon degradation or both, as discussed below. The abundance of Group 1.1c 

suggests that it might have a functional potential in these environments, once it has been 

described as a group that respond to the variation of soil pH (LEHTOVIRTA; PROSSER; 

NICOL, 2009) and nutrient levels (NICOL et al., 2005). For the other hand, the SCGC-AB-

179 group, represented by Saci, was identified with a significant relative abundance only in 

non-saline sediment. 

 

3.3.4. New lineages of Thaumarchaeota may be associated with the heterotrophic 

lifestyle 

 

 The two new genomes (Saci and Bog) described here have potential to degrade 

organic carbon and/or nitrogen (Figure 3). Furthermore, we did not identify key functional 

traits linked to ammonia oxidation metabolism (e.g., amoABC genes, 4-hydroxybutyryl-CoA 

synthetase and 4-hydroxybutyryl-CoA dehydratase) (Supplementary Table 4). 

 

3.3.4.1. Saci thaumarchaea metabolism (Anaerobic acetate fermentation) 

 

 Saci has genes of the Glycolysis/Gluconeogensis (Embden-Meyeholf) and Pentose 

Phosphate Pathways (Figure 3A and Supplementary Table 4), which are part of the 

degradation of complex sugar polymers in simple sugars. The sugar uptake may occur by 

membrane transport proteins (e.g., ABC.SS.S - simple sugar transport system, and msmX - 

multiple sugar transport system), which were also identified. Although the glycolytic pathway 

is fragmented, which may be associated with the genome completeness, some key-enzymes 

were identified, such as phosphofructokinase, indicating the potential to degrade sugars. 

 The energy in Saci may be generated by the fermentation of acetate from AMP-

forming acyl-CoA synthetase (Figure 3A) or from the use of the Fumarate as a Terminal 

Electron Acceptor (TEA) by succinate dehydrogenase/fumarate reductase. Furthermore, we 

identified only a small part of the genes related to TCA, suggesting that is not functionally in 

this genome. Saci genome described in this study has a potential capacity to hydrolyse 
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organic carbon using the Glycolytic Fermentation of Glucose to Acetate as carbon and energy 

sources. The glucose fermentation generates acetate from acetyl-CoA by one archaeal acetyl-

CoA-synthetase (ADP-forming) [E.C. 6.2.1.13] acetyl-CoA + ADP + Pi  → acetate + ATP + 

CoA) (SCHAFER; SELIG; SCHONHEIT, 1993) and has been described experimentally in 

many archaeal species, such as the strict anaerobe Pyrococcus furiosus (SAPRA; 

BAGRAMYAN; ADAMS, 2003) and Haloarcula marismortui (BRASEN; SCHONHEIT, 

2004). Dragon thaumarchaea also has potential to strach degradation (BEAM et al., 2014), as 

such the recent described Bathyarchaeota (LAZAR et al., 2016) and Thoarchaeaota (SEITZ et 

al., 2016) phylum. The potential generation of acetate in floodplain forest adds Saci 

thaumarchaea in the complex syntrophic network, as potential acetate production, and 

involved in the plant-litter decomposition and soil organic matter formation (YARWOOD, 

2018).  

 On the other hand, the Saci thaumarchaea has a fragmented-genome (completeness of 

86.33% and other parts of this genome could be incomplete.). We found a few number of 

enzymes involved in the TCA cycle (Supplementary Table 4). However, Thoarchaeota, a 

recently described Archaea phylum, does not show the majority of enzymes that are necessary 

for this pathway (SEITZ et al., 2016). Similar to the Fn1, Saci has potential to generate energy 

from the anaerobic respiration using Fumarate as a terminal electron acceptor (TEA) under 

anoxic conditions (LIN et al., 2015). We also found one enzyme ribulose bisphosphate 

carboxylase/oxygenase (RuBisCO), which may be used to generate Glyceraldehyde-3P and 

contribute in the Glycolysi pathway, as already described for the Dragon and Beowulf 

thaumarchaeas (BEAM et al., 2014).  

 

3.3.4.2. Bog thaumarchaea metabolism (heterotrophic metabolism) 

 

 Bog has potential to grow using organic carbon (e.g., glucose) and maybe organic 

nitrogen compounds (e.g., casamino acids) (Figure 3B). Almost all genes of the 

Glycolysis/Gluconeogenesis Pathway were identified, with the exception of 

Phosphofructokinase (Supplementary Table 4). We also identified all genes of the  

Non-oxidative Phosphate Pathway, which could supplement the effectiveness of this pathway. 

The same peptide/amino acid/sugar transporters identified in Saci are also presented in Bog.  

 In addition, the major difference between Saci to Bog is the presence of a major 

metabolic potential capacity to degrade amino acids (Figure 3B). We identified 33 enzymes, 

which have potential function to degrade amino acids (Supplementary Table 5),  
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while Saci has only 13. The amino acids degradation can be used to the generation of 

intermediates of the Glycolysis (e.g., Alanine or Aspartate to Pyruvate) or TCA cycle (Valine, 

Isoleucine or Methionine to Succinyl-CoA) (Figure 3B). Weber et al. (2015) suggested that 

the Group 1.1c soil Thaumarchaeota grow with addition of organic nitrogen compounds 

(glutamate and casamino acids), but not only with organic carbon. We found the potential 

degradation of 11 amino acids (organic nitrogen in the form of amino acids) and organic 

carbon, indicating a heterotrophic growth and predicting that the amino acid degradation 

routes feed into the TCA cycle. The amino acids might be transported via the general amino 

acid permeases (e.g., ABC-type dipeptide/oligopeptide/nickel transport system") (SLACK et 

al., 1991) or specific amino acid permeases (e.g., ABC-type branched-chain amino acid 

transport system) (KOYANAGI et al., 2004). We hypothesized that the metabolism of amino 

acid degradation could improve the capacity to generate TCA cycle intermediates and 

improve the energy generation. Hobbie and Hobbie (2013) described that the uptake of amino 

acids intermediates, as such protein and oligopeptides, generate an extreme competition 

between the members of the soil microbial communities and the ability to uptake every amino 

acid could improve the fitness and survive. Furthermore, to complement the potential role of 

the Thaumarchaeota on C cycle, we also found a gene that encodes one endoglucanase (GH5), 

indicating its role in the breakdown of polysaccharides into simple sugars. The microbial 

cellulase is important for the decomposition of plant litter in wetland environments 

(YARWOOD, 2018) and has been identified in Euryarchaeota (e.g., Thermococcus sp. And 

Pyrococcus horikoshii) (WU; CONRAD, 2001; KANG; ISHIKAWA, 2007). 

 To our knowledge, this is the second genome assigned taxonomically into the Group 

1.1c. The first described genome, Fn1 (LIN et al., 2015), has a metabolism associated with the 

degradation of long-chain fatty acids via beta-oxidation. In the Bog, we found almost all of 

the genes involved in this pathway, unless the gene that encode the 3-ketoacyl-CoA thiolase. 

Thiolase is important in the final step of the beta oxidation, producing Acetyl-CoA, which 

could be used in the energy generation (FUJITA; MATSUOKA; HIROOKA, 2007). We do 

not discard the possibility of on an anaerobic respiration, wherein Bog could use this pathway 

to regenerate NAD+ and a succinate dehydrogenase/fumarate reductase as TEA (LIN et al., 

2015). 
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3.4. Conclusion 

 

 The phylum Thaumarchaeota has been studied for its important ecological role in the 

Nitrogen Cycle (e.g, ammonia oxidation). The integrated data analyzes presented here 

highlights new information about the phylogeny, potential metabolism and biogeography of 

the discrete and uncultivated non-ammonia oxidizing Thaumarchaeota class, focusing in two 

new near-complete genomes. This group also may be a habitat-specific and not a generalist, 

as such the ammonia-oxidizing clade (Nitrososphaeria). We found strongly potential 

functional evidences, which associated this new thaumarchaea with the soil organic nitrogen 

and carbon decomposition and the heterotrophic lifestyle. Our results expand previous studies 

describing the ecophysiology of non-ammonia oxidizing Thaumarchaeota, and open up new 

questions about the role of Thaumarchaeota in environmental samples. 
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Figure 3. Reconstructed key metabolic pathways of three new potential non-ammonia oxidizing 

Thaumarchaeota. (A) Saci and (B) Bog thaumarchaea. Black numbers indicate the presence of enzymes of each 

individual metabolic pathway, and red numbers indicate the absence. Each number correspond to annotation 

detailed in Supplementary Table 4 
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4. WHEN IT COMES TO THE SOIL MICROBIAL GENOMES, DOES SIZE 

REALLY MATTER? 

 

 
ABSTRACT 

 

 
Soil microbiome is one of the most complex biological systems. State-of-the-art molecular 

approaches such those based on single-amplified genomes (SAGs) and metagenome 

assembled-genomes (MAGs) are now improving our capacity for disentailing soil microbial 

mediated-process. The complexity of soil microbial functions is usually related to increased 

genome sizes, which may improve the microbial fitness in a scenario with diverse but scarce 

resources. However, we contend that small-genome microorganisms may play a role in soil 

but are usually neglected by most of the studies. Here, we explored two reference soil 

microbiota datasets on the basis of the genome size of their representatives. Additionally, we 

also used two MAGs belonging to the new CPR/Patescibacteria phylum reconstructed from a 

cattle-pasture Amazon soil metagenome to complement our comparative analyzes. Our results 

suggest that microorganisms hosting small genomes exert peculiar functions in soil. 

Additionally, the use of MAGs may be a better choice over SAGs to expand the soil microbial 

databases.  

 

Keywords: Patescibacteria; Candidate Phyla Radiation (CPR); Metagenome-assembled 

genomes (MAGs); Amazon; Soil 
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4.1. Short communication 

 

 Many hypotheses may explain the complexity and high diversity of soil microbiomes. 

In the genomic context, Raes and colleagues (2007) argued that each habitat selects a specific 

range of microbial genome sizes, regarding the environment stability (ANGLY et al., 2009), 

where more stable environments select microorganisms with small genomes and less non-

redundant functions (MORRIS; LENSKI; ZINSER, 2012), such as parasites (e.g., 

Mycoplasma pneumoniae) (HIMMELREICH et al., 1996) and symbionts (MCCUTCHEON 

et al., 2009). On the other hand, complex environments favor microorganisms with larger 

genomes and accessory genes, with greater metabolic versatility, have the ability to survive 

and acclimate in a changing-environment with diverse but limited resources, like soil (DINI-

ANDREOTE et al., 2012; KONSTANTINIDIS; TIEDJE, 2004). In fact, the estimated 

genomes sizes from public available soil metagenomes, including natural (e.g., Amazon 

rainforest) and agriculture soils (e.g., soybean), ranges from 4.5 to 8.0 Mbp (SORENSEN et 

al., 2019). However, these values may be biased due the methods applied for generating this 

data.  

The vast majority of soil microorganisms have not yet been cultivated, given our 

limitation to simulate all required conditions for microbial growth. As a consequence, several 

soil microbial functions remain unknown, resulting in a break in the link between the 

microbial taxonomy and soil processes. For example, the recently proposed Candidate Phyla 

Radiation (CPR)/Patescibacteria (BROWN et al., 2015) has not yet been cultivated in higher 

numbers (up to date, only the strain TM7x has been cultivated (HE et al., 2015)). However, 

they represent nearly 15% of the domain Bacteria. Furthermore, the small genome size  

(<1.5 Mbp) is a common genomic trait shared between all members of the 

CPR/Patescibacteria group, including the lack of biosynthetic capabilities (BROWN et al., 

2015) and potential for co-metabolism interdependencies (HE et al., 2015). These biological 

traits could prove to be the strong challenge for cultivating these organisms.  

To alleviate these issues, massive DNA sequencing methods and bioinformatics tools 

have been developed to reconstruct complete or near-complete microbial genomes from 

metagenomic datasets, and access their potential functional role (WU et al., 2014). Different 

approaches are used with this aim, e.g., (i) single amplified genome (SAG), a strategy to 

sequence genomes of individual cells, and (ii) metagenome-assembled genomes (MAGs), by 

the use of metagenomics approaches.  Strategies to recovery MAGs, also known as “binning”, 

are based on using compositional signatures (e.g., GC content and coverage) for clustering 
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post-assembled sequences (WU et al., 2014). Each subpopulation derived from this analysis 

represents a potential individual genome (referred as MAG). The use of these approaches has 

revolutionized our view about microbial metabolism, diversity and evolution of soil microbial 

diversity (WOODCROFT et al., 2018; SORENSEN et al., 2019). Similarly, single-cell 

genomics has also been applied to target the unknown microbial diversity, but usually for less 

complex environments such as aquatic microbiomes (RINKE et al., 2013) and acid mine 

drainage samples (MEDEIROS et al., 2017). The application of the single-cell sequencing on 

soil microbiome studies is limited, since microbial communities are more heterogeneous in 

soil particles, and other unsolved challenges related to cell capture and downstream analysis 

due to the complex nature of the ecosystem (EICHORST et al., 2015). 

Here, we applied an integrated meta-analysis of public available genomes and 

metagenomes, aiming to explore the genome size features of soil microorganisms using two 

datasets: (i) the recently launched RefSoil database (CHOI et al., 2017), and (ii) the 

metagenome assembled-genomes (MAGs) from the thawing permafrost deposited on NCBI 

(WOODCROFT et al., 2018). We also used two reconstructed genomes belonging to the new 

CPR/Patescibacteria phylum reconstructed from a cattle-pasture Amazon soil metagenome to 

complement our comparative analyzes (Supplementary Material and Methods). 

 Our analysis revealed that the average size of the microbial genomes available in the 

RefSoil (CHOI et al., 2017) was 4.5 ± 1.0 Mbp (Figure 1A). Similarly, almost all MAGs 

retrieved from the thawing permafrost dataset had their average genome size close to those 

observed in the RefSoil (Figure 1B). However, CPR/Patescibacteria genomes had an average 

genome size of 0.9 ± 0.2 Mbp (985.282 ± 283.457 bp). The size of the soil 

CPR/Patescibacteria genomes is 4-fold smaller than the mean identified in the RefSoil and the 

thawing permafrost databases. The same pattern was also found when we checked the genome 

size of the two new CPR/Patescibacteria MAGs reconstructed using a cattle-pasture of 

Amazon soil metagenome dataset (Supplementary Table 1 and 2), which are also similar to 

the soil CPR/Patescibacteria described by Kroeger and collaborators (2018) using tropical soil 

metagenomes. We provisionally name these MAGs Caipora and Curupira.  

 To better understand the relationship between the genome size and the potential 

functions performed by soil microorganisms, we also deeply explore the functions of 18 new 

CPR/Patescibacteria reconstructed in the thawing permafrost metagenomes (WOODCROFT 

et al., 2018), together with the two new CPR/Patescibacteria described here and the genomes 

described by Kroeger et al. (2018). The functional profile of the CPR/Patescibacteria 

representatives was based on COG (Clusters of Orthologous Groups) genome annotation data, 
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through a set of multivariate statistics, and compared with the functional profile of all other 

genomes deposited on RefSoil database. We observed that members of this phylum harbor 

similar functional profiles, but very different from other microbial phyla (Figure 2A), 

indicating a functional redundancy. 

 

Figure 1. Soil genome size distributions. (A) RefSoil database and (B) Metagenome-assembled genomes 

(MAGs) from thawing permafrost metagenomes 

 

 Regarding to the potential central metabolism, we identified that all soil 

CPR/Patescibacteria studied here lack the functional Tricarboxylic Acid Cycle (TCA) 

pathway and electron transport chain to generate ATP, but some of them may ferment organic 

compounds via glycolysis pathway, generating lactate as final products (Figure 2B and 2C). 

Overall, the soil CPR/Patescibacteria genomes described here also lacks genes required for 

the De novo biosynthesis of nucleotides, amino acids and cofactors (Supplementary Table 3 

and Figure 2B-C). These metabolic limitations could suggest an episymbiotic lifestyle 

A B 
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(CASTELLE et al., 2018) or parasitism, as already described in the interaction between the 

obligate epibiont TM7x (CPR/Patescibacteria) and Actinomyces odontolyticus strain (XH001) 

in the oral environment, where TM7x kills its host (HE et al., 2014). On the other hand, a new 

soil bacterium called Candidatus Udaeobacter copiosus (Verrucomicrobia) was recently 

described (BREWER et al., 2017) as being free-living and hosting a 2.81 Mbp genome. 

Metabolic predictions indicated that C. U. copiosus could keep a reduced genome by 

acquiring costly amino acids and vitamins from the environment (BREWER et al., 2016).  

A few number of genomes shorter than 1.5 Mbp are available on RefSoil (Supplementary 

Table 4), and all of them have a parasitic lifestyle (for example Neorickettsia and 

Tropheryma). These findings reinforce the hypothesis that soil CPR/Patescibacteria could also 

be associated with a symbiotic/parasitic lifestyle. 

 Our data also highlight the importance of binning methods for the expansion of 

RefSoil database. In the original paper, which described the RefSoil database (CHOI et al., 

2017), the authors recommended the use of single-cell methods. However, the single-cell 

genomes presented by Choi et al. (2017) did not present good quality recommended by the 

Minimum information about a single amplified genome (MISAG) standards (BOWERS et al., 

2017) (Supplementary Table 5). We argue that the binning approaches may complement the 

single-cell approaches to expanding the RefSoil database allowed us a more complete and 

informative soil microbial reference database. 

 In conclusion, the small-sized genome is a peculiar trait of the CPR/Patescibacteria 

phyla members living in thawing permafrost and cattle-pasture soils. Here, we expanded the 

range of environments within the radiation of this bacteria group and their ecological role, 

including two distinct soils that showed CPR/Patescibacteria with similar functions (e.g., 

fermentation). These findings indicate a possible syntrophy between CPR and other 

microorganisms, such as methanogenic archaea or acetogenic bacteria during the soil organic 

matter degradation, revealing a functional redundancy between the CPR/Patescibacteria in the 

soil microbiome. Furthermore, soil CPR/Patescibacteria lacks essential biosynthetic functions 

(e.g. de novo amino acids and nucleotide biosynthesis) indicating a symbiotic lifestyle (e.g. 

cell surface attached). Also, further study is required to better elucidate the ecology of 

CPR/Patescibacteria, such as the design of new 16S rRNA primers to measure the abundance 

and structure of CPR/Patescibacteria in soil microbial communities, and their metabolism 

using metatranscriptomics and/or RNA-SIP. 
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Figure 2. CPR/Patescibacteria functional genome profile. (A) Similarity between the soil microbial genomes and 

the Patescibacteria phyla. (B-C) Patescibacteria genome from Amazon cattle-pasture (Caipora) (B) and thawing 

permafrost (GCA_003151615.1) (C) soils 

 

References 

ANGLY, F. et al. The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial 

Average Genome Size in Four Major Biomes. PloS Computational Biology, San Francisco, 

v. 5, n. 12, 2009. 



64 

 

 

BROWERS, R.M. et al.  Minimum information about a single amplified genome (MISAG) 

and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature 

Biotechnology, London, v. 35, n. 8, p. 725-731, 2017. 

BREWER, T. E. et al. Genome reduction in an abundant and ubiquitous soil bacterium 

‘Candidatus Udaeobacter copiosus’. Nature Microbiology, London, v. 2, n. 2, p. 16198, 

2017. 

BROWN, C. T. et al. Unusual biology across a group comprising more than 15% of domain 

Bacteria. Nature, London, v. 523, n. 7559, p. 208–211, 2015. 

CASTELLE, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the 

CPR and DPANN radiations. Nature Reviews Microbiology, London, v. 16, n. 10, p. 629–

645, 2018. 

CHOI, J. et al. Strategies to improve reference databases for soil microbiomes. The ISME 

Journal, London, v. 11, n. 4, p. 829–834, 2017. 

DANIEL, R. The metagenomics of soil. Nature Reviews Microbiology, London, v. 3, n. 6, 

p. 470–478, 2005. 

DINI-ANDREOTE, F. et al. Bacterial genomes: habitat specificity and uncharted organisms. 

Microbial Ecology, Amsterdam, v. 64, n. 1, p. 1–7, 2012. 

EICHORST, S. A. et al. Advancements in the application of NanoSIMS and Raman 

microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiology 

Ecology, Amsterdam, v. 91, n. 10, 2015. 

HE, X. et al. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and 

epibiotic parasitic lifestyle. Proceedings of the National Academy of Sciences of the USA, 

Washington, DC, v. 112, n. 1, p. 244–249, 2015. 

HIMMELREICH, R. et al. Complete sequence analysis of the genome of the bacterium 

Mycoplasma pneumoniae. Nucleic Acids Research, Oxford, v. 24, n. 22, p. 4420–4449, 

1996. 

KONSTANTINIDIS, K. T.; TIEDJE, J. M. Towards a Genome-Based Taxonomy for 

Prokaryotes. Journal of Bacteriology, Washington, DC, v. 187, n. 18, p. 6258–6264, 2005. 

KROEGER, M. E. et al. New biological insights into how deforestation in Amazonia affects 

soil microbial communities using metagenomics and metagenome-assembled genomes. 

Frontiers in Microbiology, Lausanne, v. 9, p. 1635, 2018. doi: 10.3389/fmicb.2018.01635. 

MCCUTCHEON, J. P. The bacterial essence of tiny symbiont genomes. Current opinion in 

Microbiology, London, v. 13, n. 1, p. 73-78, 2010. 

MEDEIROS, J. D. et al. Single-cell sequencing unveils the lifestyle and CRISPR-based 

population history of Hydrotalea sp. in acid mine drainage. Molecular Ecology, Amsterdam, 

v. 26, n. 20, p. 5541–5551, 2017. 



65 

 

 

MORRIS, J. J.; LENSKI, R. E.; ZINSER, E. R. The Black Queen Hypothesis: Evolution of 

Dependencies through Adaptive Gene Loss. MBio, Washington, DC, v. 3, n. 2, e00036-12, 

2012. 

RAES, J. et al. Prediction of effective genome size in metagenomic samples. Genome 

Biology, London, v. 8, n. 1, p. R10, 2007. 

RINKE, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. 

Nature, London, v. 499, n. 7459, p. 431–437, 2013. 

ROESCH, L. F. W. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. 

The ISME Journal, London, v. 1, n. 4, p. 283–290, 2007. 

SORENSEN, J. W. et al. Ecological selection for small microbial genomes along a temperate-

to-thermal soil gradient. Nature Microbiology, London, v. 4, n. 1, p. 55–61, 2019. 

WOODCROFT, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. 

Nature, London, v. 560, n. 7716, p. 49–54, 2018. 

WU, Y.-W. et al. MaxBin: an automated binning method to recover individual genomes from 

metagenomes using an expectation-maximization algorithm. Microbiome, London, v. 2, n. 1, 

p. 26, 2014.  

 

 



66 

 

 

5. EFFECTS OF FOREST-TO-PASTURE CONVERSION AND INCREASE IN SOIL 

MOISTURE LEVELS ON ARCHAEA COMPOSITION IN AMAZON SOILS 

 
ABSTRACT 

 
The Amazon rainforest is one of the most diverse biomes of the Earth. However, recent predictions 

suggest an increase in precipitation during the Amazonian wet season as a result of global climate 

change, and these changes can be intensified with the forest-to-pasture conversion, altering important 

soil properties, such as soil moisture. Here, the hypothesis that the forest-to-pasture conversion and the 

increase of soil moisture levels modify the Archaea community composition (potential methanogens 

and non-methanogens) was tested. To test this hypothesis, forest and pasture soil samples from the 

Eastern Amazon Forest were collected and a 30-day microcosm incubation experiment with four 

moisture levels (control, 60, 80, and 100% of field capacity) to simulate extreme rainfall events 

(floods) in the rainy season was conducted. Further, the structure and composition of the archaeal 

communities using 16S rRNA amplicon sequencing were analysed using bioinformatics and statistical 

models. The soil methane fluxes were also analyzed on a gas chromatograph from the same samples, 

and the results were integrated with the Archaea abundance. As already described for this microcosm 

experiment, forest and pasture soils under 60% and 80% FC presented negative/or neutral emission 

values, but with the increase of soil moisture to 100% FC, primary forest and pasture soils started 

acting as methane source, with the latest soil presenting the highest emission. Similar to the methane 

emission in pasture soils, there was a significant correlation in decreased relative abundance of 

Thaumarchaeota and the increased potential methanogenic phyla Bathyarchaeota with increasing in 

field capacity of the pasture soils. Analysis based on beta diversity indicated that archaeal 

communities were first strongly determined by long-term (land-use change) and then by short-term 

(moisture level) perturbation. Furthermore, soil moisture controlled more the increase of beta diversity 

in pasture than in forest soils. Our results indicated that the community alterations caused by the 

higher soil moisture levels were most pronounced in pasture, where communities from pasture were 

more sensitive, enhancing the potential of methanogenesis, while forest may act as buffers during the 

rainy season and harbor more stable communities. Given the intensification of forest-to-pasture 

conversion in the Amazon region and the possible prolongation of the rainy season as a result of 

climate change, methane production could increase because of the effects of these perturbations on the 

archaeal community composition. 

 

Keywords: Deforestation; Microcosms experiment; Methanomassiliicoccales; Bathyarchaeota 
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5.1. Introduction 

 

 The Amazon rainforest is a great reservoir of biological diversity, including 25% of 

the world’s terrestrial animal and plant species, and is responsible for regulating 

biogeochemical cycles (WILSON et al., 2016) with effects on the climate (MALHI et al., 

2008). This also includes the importance of microbial communities in maintaining a 

functional equilibrium in native forests in this region (MENDES et al., 2015). However, 

previous studies demonstrated that land-use changes had altered the abundance, composition 

and diversity of specific bacterial taxa detected in these soils, such as Acidobacteria 

(NAVARRETE et al., 2015), Verrucomicrobia (Ranjan et al., 2015), and also Fungi 

(MUELLER et al., 2014).  

 Up to date, only a small number of studies have investigated the diversity of Archaea 

in Amazon soils (HAMAOUI et al., 2016; NAVARRETE et al., 2011; TUPINAMBÁ et al., 

2016). This group is widespread in most environments and has many important functions in 

soil ecosystems, such as methanogenesis through anaerobic degradation of organic matter and 

N cycling through oxidation of ammonia to nitrite (OFFRE; SPANG; SCHLEPER, 2013). 

Methanogenic Archaea are found in anaerobic environments and can grow and produce 

methane through multiple processes. These processes include reduction of different carbon 

compounds such as carbon dioxide and hydrogen (hydrogenotrophic methanogens), methyl 

compounds (methylotrophic methanogens) and acetate (acetoclastic methanogens) 

(JABLÓNSKI; RODOWICZ; LUKASZEWICZ, 2015). Classical microbiological studies 

based on the culture-dependent methods indicated that only the seven Euryachaeota classes 

(Methanococcales, Methanopyrales, Methanobacteriales, Methanosarcinales, 

Methanomicrobiales, Methanocellale and Methanomassiliicoccales) are methanogens 

(HEDDERICH; WHITMAN, 2006; BORREL et al., 2013). The orders Methanococcales, 

Methanopyrales, Methanobacteriales, Methanomicrobiales, and Methanocellales are strictly 

hydrogenotrophic (LIU; WHITMAN, 2008), while Methanosarcinales are more versatile, 

which includes Methanosarcina sp., with the the ability to use the three pathways 

(SPRENGER et al., 2000). The Methanomassiliicoccales order is able to uses many 

methylated compounds (e.g., methylamines, monomethylamine, dimethylamine and 

trimethylamine) (BORREL et al., 2013). With the advent of the high-throughput sequencing, 

it has been possible to reconstruct genomes from metagenomes and explored the metabolic 

potential through genome-centric analysis of the new yet not culturable microorganisms 
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(EVANS et al., 2015; LEMOS et al., 2017). This approach allowed the discovery of new 

taxonomic groups of potential methanogenic Archaea, namely Bathyarchaeota (EVANS et al., 

2015) and Verstraetearchaeota (VANWONTERGHEM et al., 2016), which expanded the 

groups with the ability to produce methane by the fermentation of various methylated 

substrates. The phylum Thaumarchaeota, on the other hand, has metabolic traits associated 

with ammonia oxidation (KEROU et al., 2016) and the most studied class is Nitrososphaeria 

(TOURNA et al., 2011). However, recent studies have indicated that the Group 1.1c within 

Thaumarchaeota is not capable of oxidizing ammonia and they are widespread in soils 

(WEBER et al., 2015), hot springs (BEAM et al., 2014) and marine sediments (LIN et al., 

2015).  

 Land-use change in the Amazon region has been associated with alterations in 

cloudiness and precipitation (WANG et al., 2009a), with a recent prediction suggesting 

increased precipitations during the wet season (GLOOR et al., 2015). The intensification of 

deforestation in the Amazon region and the possible prolongation of the wet season as a result 

of climate change may alter soil properties. In this case, the variability of soil parameters like 

moisture, which is also linked to land-use changes (VERCHOT et al., 2010), could affect 

specific microbial processes such as ammonia oxidation (DI et al., 2014) and methanogenesis 

(BREWER et al., 2018). Thus, alterations in the precipitation, and moisture in the Amazon 

soils could affect the structure of the archaeal community linked to methanogenesis, further 

altering the flux of methane in this region. This group of microorganisms also respond to 

changes in multiple environmental factors including soil pH (TRIPATHI et al., 2013), 

moisture content and C:N ratio (SHI et al., 2016). However, knowledge on biology of the 

archaeal communities and their roles in biotic and abiotic factors of Amazon soil is very 

poorly understood. 

Amazon soils play an important role in the global methane cycle, and changes in land-

use and precipitation may also alter its balance (source to sink or vice and verse). In general, 

there are many evidences that demonstrate the fact that Amazon forest soils are a sink for 

atmospheric methane (FERNANDES et al., 2002; KELLER et al., 2005) and that these soils 

might have the potential to consume approximately 470 mg C-CH4 per m2 per year 

(STEUDLER et al., 1996). Whereas advances in deforestation and establishment of pastures 

leads to decrease in their potential to act as carbon sink. Several studies have demonstrated 

this fact, with pastures potentially emitting large amounts of methane of about 270 mg C-CH4 

per m2 per year (FERNANDES et al., 2002 and STEUDLER et al., 1996). Furthermore, 

studies have also revealed that increasing water content in these pasture soils may further 
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stimulate their methane production through changes (e.g. taxonomic and functional) in the 

archaeal community (KELLER et al., 2005; MEYER et al., 2017; MUTSCHLECHNER et al., 

2018; PREM et al., 2014). Predicted intensifications of both land-use (i.e. forest-to-pasture 

conversion) and rainfall in the Amazon region are major concerns, as these changes may lead 

to an increased methane production, further affecting the global climate. 

 Here, the responses of archaeal communities to long-term (land-use change) and short-

term (soil moisture level alterations) disturbance in Amazon soils were explored. We 

hypothesized that land-use change (forest-to-pasture conversion) and the increase of soil 

moisture levels modify the archaea community composition (e.g., potential methanogens and 

non-methanogens). To test our hypothesis, we collected soil samples from a native forest and 

a cattle pasture in the Eastern Amazon (Tapajos National Forest) and conducted a 30-day 

microcosm incubation experiment using four moisture levels. The experimental treatments 

simulated an increase in moisture levels during the rainy season as well as extreme rainfall 

events (floods), as this has been predicted to be more frequent in Amazon (HARPER et al., 

2010; ARVOR et al., 2017). The 16S rRNA amplicon sequencing was used to assess the 

archaeal community structure and composition and analyzed the data using the integration 

between metataxonomy and environmental metadata (soil methane fluxes). 

 

5.2. Material and Methods 

 

The microcosm experiment described here also was used by VENTURINI (2019), 

which included the soil methane fluxes analyzed on a gas chromatograph. 

 

5.2.1. Site description and soil sampling 

 

The sites are located in the Belterra municipality, in the state of Pará, Brazil. The 

climate of the region is classified as Am (Köppen-Geiger classification), with an average 

annual air temperature of 26 °C and average annual precipitation of 2150 mm. The 

predominant soil type is Oxisol, with clay texture and low fertility. Soil sampling was carried 

out in July 2015 in the Tapajós National Forest (3°17'44.4"S, 54°57'46.7"W), a well-

preserved primary forest with no evidence of logging, fire and other disturbances. A cattle 

pasture (3°18'46.7"S, 54°54'34.8"W) next to the forest, which was established more than  

20 years ago, after the slash-and-burning of the natural vegetation with subsequent seeding of 
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fast-growing non-native grass Urochloa brizantha (Supplementary Figure 1). At each site, a 

150 m transect was established with three equally spaced sampling points (50 m apart). First, 

the litter layer was removed, and then, soil samples were collected from 0-10 cm depth. These 

included (1) 500 g of loose soil for chemical properties, (2) 50 g of loose soil for molecular 

analysis, and (3) 2000 g of loose soil for the microcosm experiment. For each analysis, a total 

of 6 soil samples were collected in the field (2 sites × 3 sampling points per site). Then, soil 

samples were transported to the research facility on ice, where samples for molecular analysis 

were stored at -80 °C and samples for chemical analysis at 4°C. 

 

5.2.2. Microcosm experiment and gas chromatography 

 

For each site, three soil samples (2000 g of loose soil) were mixed to form one 

composite sample, totalling 6000 g of soil. Then, the soil was sieved through a 5 mm mesh to 

remove litter material prior to the microcosm experiment, which consisted of a 2 X 4 factorial 

design: 2 soils (forest and pasture) x 4 moisture levels (original moisture, determined as 22% 

for forest and 24% for pasture; and 60%, 80% and 100% of moisture at field capacity.). Each 

treatment was established in triplicate in 1.5 L jars filled with 350 g of soil. The jars were 

maintained for 30 days at 25 °C in a BOD incubator, in which the soil moisture of each jar 

was checked and corrected daily by weighing. Before testing for moisture content at 1, 2, 3, 6, 

9, 12, 15, 18, 21, 24, 27 and 30 days after the start of the experiment, gas samples from each 

jar were collected with a syringe for 30 minutes (1, 10, 20 and 30 minutes after the jars were 

closed). The soil from each jar was frozen in liquid nitrogen and stored at -80 °C at the end of 

the experiment. The gas samples were analyzed on a SRI 8610c gas chromatograph (SRI 

Instruments, Torrance, CA, USA). Methane fluxes from each jar were calculated according to 

the change in the jar concentration over time. Based on these results, the total accumulated 

emissions were determined by the linear interpolation of the daily emission. As described by 

VENTURINI (2019), primary forest and pasture soils under 60% and 80% FC presented 

negative/or neutral emission values compared to their respective control/untreated soils 

throughout the experimental period, thus demonstrating that under these conditions these soils 

can act as methane sink (Supplementary Table 1). 
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5.2.3. DNA extraction, quantification and sequencing 

 

Total DNA from each soil sample was extracted using PowerLyzer PowerSoil DNA 

Isolation Kit (MO Bio Laboratories, Carlsbad, CA, USA), according to the manufacturer’s 

protocol, except at the initial stage after the addition of the C1 Solution, in which the samples 

were vortexed for 15 minutes at maximum speed and centrifuged for 3 minutes at 10,000 x g. 

The quality and quantity of the DNA samples were evaluated using agarose gel 

electrophoresis and Nanodrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, 

MA, USA). The V4 region of the archaeal 16S rRNA gene was amplified using the primer 

pair 519F and 915R (COOLEN et al., 2004); the resulting PCR products were sequenced with 

Illumina HiSeq 2500 platform (2 x 250 bp) (Illumina, San Diego, CA, USA) at Novogene 

Corporation, Beijing, China. 

 

5.2.4. Bioinformatics analysis 

 

Bioinformatics analyses were performed using Divisive Amplicon Denoising 

Algorithm (DADA2) version 1.8 pipeline (CALLAHAN et al., 2016a) to remove low-quality 

sequences, model and correct Illumina-sequencing errors, merge paired-end reads, identify 

and quantify ASVs (Amplicon Sequence Variants). The paired-end reads were truncated to 

240 bp (forward) and 160 bp (reverse), and reads shorter than the minimum length were 

discarded. The low-quality sequences were removed that presented the maximum number of 

expected errors (maxEE) equal or greater than 2, and after truncation, sequences with that 

contained Ns were also discarded. To estimate the error rates, a parametric error model was 

used after de-replicating the data using a core sample inference algorithm. Finally, the 

complete denoised data were obtained after merging the forward and reverse reads with an 

overlap criterion in which at least 12 bases were identical in the overlapping region. The 

taxonomy was predicted using the naive Bayesian classifier method (WANG et al., 2007b), 

where the sequences were compared against a trained dataset based on the Silva database (v. 

132) (PRUESSE et al., 2007). Sequences assigned as Bacteria were removed from the dataset. 

Multivariate statistics based on Detrended Correspondence Analysis (DCA) were calculated 

using phyloseq R package (MCMURDIE; HOLMES, 2013). Similar to the statistics on 

methane fluxes, the Aligned-rank transformation (ART) was performed on the abundance for 

each taxonomic level of the Archaea. To integrate the phylogenetic and the functional 

dimensions, and to identify which ASVs were correlated with the methane emission,  
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linear Pearson correlations were estimated with a threshold value of 0.7 and p-value ≤ 0.05  

(R Core Team) based on the relative abundance values. To better visualize the changes in the 

relative abundance on a heatmap log transformations (log(x+1)) were applied. 

 

5.3. Results 

 

5.3.1. Community structure and composition of archaea  

 

 A total of about 2.5 million 16S rRNA sequences were obtained, with an average of 

45,210 ± 24,368 sequences per sample. After the sequence processing, 108 archaeal ASVs 

were identified. 

 In the microcosm experiment, the archaeal communities in forest and pasture soils 

were mainly influenced by long-term (land-use change; 73.8% of variation) followed by 

short-term (moisture level; 15.3% of variation) changes (Figure 1). Although the increased 

moisture levels altered the archaeal community structure in both soils, it affected pasture soils 

more than the forest soils. In addition, the field samples were highly similarity to the control 

treatments in the microcosm experiment. There was an increase in beta diversity in pasture 

soils, as shown by a greater dispersion and distance between the clusters of each treatment.  

 The three most abundant archaeal phyla were Thaumarchaeota (97.7±3.4% of the total 

sequences), followed by Bathyarchaeota (1.2±2.5%) and Euryarchaeota (1.1±0.9%)  

(Figure 2). At a deeper taxonomic level, Thaumarchaeota (Nitrososphaerales, Nitrosotalestes 

and Group 1.1c) and Euryarchaeota (Methanobacteriales, Methanocellales, Methanosarcinales 

and Methanomassiliicoccales) were affected by the interactions between their land-use change 

and increase in moisture of the soils (p ≤ 0.05) (Table 1). Similar results were observed for the 

Bathyarchaeota phylum as well (Table 1).  
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Figure 1. Detrended correspondence analysis for the archaeal communities in forest and pasture soils 

from Eastern Amazon under different moisture levels (control, 60, 80, and 100% of field capacity) after 30 

days of experiment. Each colour represents one specific treatment based on the moisture level; while each shape 

represents the land-use 
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Table 1. Aligned-rank transformation (ART) for non-parametric ANOVA of the relative abundance of archaea group as a function of land-use 

(forest-to-pasture conversion) and soil moisture levels, along with interaction 

 

Archaea groups Land-use Moisture levels Land-use x Moisture levels 

 F                              p F                            p F                                  p 

Thaumarchaeota       

          Group 1.1c 3.7 0.06 9.2 ≤0.0005 7.3 ≤0.005 

          Nitrososphaerales 11.0 ≤0.005 0.4 0.69 9.3 ≤0.0005 

          Nitrosotaleales 40.9 ≤0.005 1.7 0.16 4.1 ≤0.05 

Bathyarchaeota       

          Bathyarchaeota 28.6 ≤0.0005 4.5 ≤0.005 9.9 ≤0.0005 

Euryarchaeota       

          Methanobacteriales 104.8 ≤0.0005 7.2 ≤0.0005 11.7 ≤0.0005 

          Methanocellales 20.6 ≤0.0005 9.1 ≤0.0005 13.9 ≤0.0005 

          Methanosarcinales 14.3 ≤0.0005 5.8 ≤0.005 3.7 ≤0.05 

          Methanomassicoccales 27.2 ≤0.0005 4.2 ≤0.05 2.7 ≤0.05 
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Figure 2. Relative abundance of Archaea in forest and pasture soils from Eastern Amazon under different moisture levels (control, 60, 80, and 100% of field 

capacity) after 15th and 30th days of microcosm experiment. The three most abundant Archaea phylum: Thaumarchaeota – non-methanogens (A) and Potential 

methanogens taxa (B). 
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 The Thaumarchaeota groups responded differently to the changes in soil land-use and 

their moisture contents (Figure 2A). For example, the relative abundance of Nitrososphareles 

at 30-day time point from forest soils with 100% FC increased (91.9±0.01%) compared to 

control (86±1.0%), whereas it decreased in pasture soils (control: 91.1±1.3% to 100% FC: 

82.6±0.02%). However, the reverse was true for the Nitrosotaleales group, where the relative 

abundance was higher in forest (7.8±1.2%) than pasture (4.4±0.1%), and the effects of the 

moisture (100% of FC) was stronger in forest (5.3±0.6%) than pasture (4.6±0.8%). Even 

though the interaction between the two factors (land-use and moisture content) was significant 

(p ≤ 0.05) in affecting the relative abundance of the Nitrosotaleales, the moisture content 

alone was not significant in affecting their composition which can be seen by the similar 

relative abundance in the control and 100% FC treatment in pasture soil. Also, the Group 1.1c 

was more abundant in forest (4.19±0.9%) than pasture (3.6±1.6%), and the changes in soil 

moisture content reduced their relative abundance in both forest (1.3±0.1%) and pasture 

(2.3±1.0%) soils (100% FC). 

 The potential methanogenic groups Bathyarchaeota and Euryarchaeota 

(Methanobacteriales, Methanocellales, Methanosarcinales and Methanomassiliicoccales) were 

also affected by both soil land-use change and increase in their moisture content (Figure 2B). 

The same pattern was observed for both time points of the experiment (15th and 30th day), but 

unlike the forest, the pasture was more influenced by the time. Stronger effect was observed 

as a result of the interaction of the factors (land-use and moisture content) with the increase in 

relative abundances of Bathyarchaeota and Methanomassiliicoccales. Bathyarchaeota 

increased seven times more in pasture (0.01±0.02 to 7.2±2.2%) than in forest (0.06±0.02 to 

0.28±0.08%) under 100% FC on the 30th day. The same pattern was observed for 

Methanomassiliicoccales and Methanobacteriales. However, the Methanocellales and 

Methanosarcinales decreased in pasture with 100% of FC. It is also to be noted that the 

overall incubation time period had affected the archaeal community structure more in the 

pasture than the forest soils (Figure 2A and 2B). 
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5.3.2. Archaeal communities and methane emission 

 

 We analyzed the correlation between the relative abundance of the ASVs and methane 

emissions in both soils. Seven ASVs were positively correlated with methane emissions, 

being four in pasture and three in both soils (Figure 3). All of them belong to either 

Euryarchaeota (Thermoplasmata; Methanomassiliicoccales) or Bathyarchaeota phyla. 

ASV_45, ASV_32, and ASV_36 were associated with methane emissions in both forest and 

pasture soils. ASV_45 was assigned to the potential methanogenic phyla Bathyarchaeota and 

ASV_31 and ASV_36 to the methanogenic Euryarchaeota Methanomassiliicossus (Figure 3). 

The best BLAST identity (100%) for ASV_45 was a nucleotide sequence characterized in a 

stable-isotope probing (SIP-DNA) study based on the methanogenic communities (NCBI Id: 

AJ879013) in the rice rhizosphere (LU; CONRAD, 2005). 

 Soil specific associations between the increase in the methane emissions and ASVs 

were also identified in pasture, but not in forest. For example, ASV_25, ASV_41, ASV_84, 

assigned to Bathyarchaeota, and ASV_69, assigned to Methanomassiliicoccus, were 

significantly correlated to CH4 emissions only in pasture (Figure 3). 
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Figure 3. Abundance and correlation between Amplicon Sequence Variants (ASV) and methane emissions in forest and pasture soils from Eastern Amazon under 

different moisture levels (control, 60, 80, and 100% of field capacity) after 30 days of experiment. The relative abundance and taxonomy assignment of each ASV, which 

was correlated with the methane increase, was log+1 transformed to better visualization the values. The correlation column indicates for which land-use each ASV was 

correlated (r ≥ 0.7 and p ≤ 0.05) with the increase in methane emission 
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5.3. Discussion 

 

 Our data demonstrated that archaea community dynamics were altered with the long-

term (forest-to-pasture conversion) and short-term (increase in soil moisture level) changes in 

the Amazon soils. The data showed that archaeal community in pasture was more responsive 

to the increase of soil moisture levels than forest soil. We hypothesize a scenario where forest 

soils may buffer the archaeal communities and influence their resistance against the increase 

of soil moisture levels. In the dry season (equivalent to ~ 60 % FC), the precipitation and 

humidity are reduced, but the forest soils were able to withdraw water from deep layers, 

maintaining the soil moisture content than pasture soils (VON RANDOW et al., 2004; 

JUÁREZ et al., 2007). In addition, the soil moisture content is also controlled by the increase 

of litterfall during the dry season in Amazon rainforest (CAMARGO et al., 2015; XU et al., 

2013). The forest soils may select microorganisms more adapted to survive the rapid increase 

in moisture content during the wet season, as suggested by Evans and Wallenstein (2014), 

who also showed that the environmental history can influence changes in microbial 

communities. These archaeal groups may also have adaptive mechanisms to tolerate other 

physiological stresses (e.g., osmolyte accumulation, control of ion flux and change in protein 

expression) caused by the rapid change in water potential (MARTIN; CIULLIA; ROBERTS, 

1999). 

 As already described by Venturini (2019), using the same microcosm experiment used 

here, the forest-to-pasture conversion and the increase in soil moisture level affect the abiotic 

factors of the soil, especially their methane fluxes. Similar to other studies performed in this 

region, it was observed that forest-to-pasture conversion lead to an increase in soil pH and 

nutrients availability, mainly by the addition of large amount of ashes derived slash and burn 

events of the original vegetation (FERNANDES et al., 2002; KROEGER et al., 2018; 

PEDRINHO et al., 2018). Furthermore, studies suggest that forest-to-pasture conversion may 

also alter soil physical properties (i.e. soil texture, macro- and microporosity, density and 

water content) and consequently affect microbial communities and further important 

processes like including ammonia oxidation and methane production (SONG et al., 2003; 

KELLER; REINERS, 1994; KELLER et al., 2005). Some studies have demonstrated that 

forest soils are an important sink of methane under low moisture content (~60% FC) and 

crucial for minimizing the impacts of global climate change (MUTSCHLECHNER et al., 

2018). However, the increase in moisture content in these soils (equivalent to intensive 
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rainfalls), increased the production of methane. It is important also to note that the pasture 

soils generally presented the highest emission values 

 The low resistance to the increase of moisture content in pasture soils indicated that 

the stability of this community was reduced, changing the relative abundance of 

Thaumarchaeota (Nitrososphaerales, Nitrosotalestes and Group 1.1c), Euryarchaeota 

(Methanobacteriales, Methanocellales, Methanosarcinales and Methanomassiliicoccales) and 

Bathyarchaeota, resulting in higher methane emissions. Our data indicated that 

Thaumarchaeota was the most abundant archaeal group in all samples. When we increased the 

water content (from 60% to 100% FC), the Thaumarchaeota groups decreased in 10% in 

pasture soils. In temperate forest soils, Szukics et al. (2012) described that the abundance of 

ammonia-oxidizing archaea and the amoA gene are dependent on soil properties. Similar to 

the results described here, Szukics and collaborators (2012) identified that the increased of 

soil moisture provided a non-optimal condition for Thaumarchaeota survival, suggesting a 

sensitivity to anaerobic conditions. In this case, the low dissolved oxygen may control the 

relative abundance of ammonia-oxidizing archaea (ERGUDER et al., 2009) and the rates of 

nitrification (DONG et al., 2011). 

 The relative abundance of the phyla Euryarchaeota and Bathyarchaeota were higher in 

pasture soils compared to forest soils and the changes were further intensified by the increase 

in soil moisture content (e.g., 100% of the field capacity). Euryarchaeota (MORAN et al., 

2005) and their role in methane production are very well studied in soils (ANGEL; CLAUS; 

CONRAD, 2012). Furthermore, Meyer et al. (2017) also observed shifts in the methanogenic 

communities after the deforestation of the Amazon forest. Bathyarchaeota, a new proposed 

archaeal phylum with a potential role in methanogenesis (EVANS et al., 2015) and 

acetogenesis (HE et al., 2016), had not yet been identified in Amazon soils. Bathyarchaeota 

and Euryarchaeota have a versatile metabolism in low-oxygen environments, and theirs high 

abundance in pasture soil under 100% of the field capacity may be associated with changes in 

soil properties (e.g., soil compaction) after the forest-to-pasture conversion. These changes 

may have been caused as a consequence of the poor grazing management and subsequent 

compaction of soil (BRAZ et al., 2013), since soil compaction alters the structure and size of 

soil pores occupied by water (TORBERT; WOOD, 1992), limiting the air and water 

conductivity (HARTMANN et al., 2014). In this case, continuous cow grazing and trampling 

on pastures reduces the macropore space, decreasing soil oxygenation and increasing methane 

emissions. A similar pattern was described by Frey and collaborators (FREY et al., 2009),  

in a study about the effect of heavy-machinery traffic on the abundance of methanogens in 



81 

 

 

oxic forest soils, and Radl (2007) described an increase in the soil methane production 

stimulated by cattle grazing in grasslands. 

 We also identified seven potential ASVs associated with methane emission in Amazon 

soils. For the first time, high-abundant Bathyarchaeota were identified in Amazon soils under 

wet conditions, which have the potential to emit methane. One Bathyarchaeota ASV, which 

had 100% sequence identity to an unculturable methanogenic archaea from anoxic rice soils 

(LU; CONRAD, 2005), increased its abundance in pasture soils at 100% of the field capacity, 

indicating a potential methanogenic role. One Euryarchaeota ASV also presented the same 

pattern of identity and abundance, but we were able to taxonomically assign it only at the 

genus level (Methanomassiliicoccus). There are two sequenced genomes for this genus: 

Candidatus Methanomassiliicoccus intestinalis (BORREL et al., 2013) and 

Methanomassiliicoccus luminyensis (GORLAS et al., 2012) and they were isolated from the 

human microbiome but are also identified in paddy soils (REIM et al., 2017) and wetlands 

(SÖLLINGER et al., 2015). 

 Our results reveal a potential emerging contribution of Bathyarchaeota and 

Methanomassiliicoccus to the methane emission, as consequence of the forest-to-pasture 

conversion and the increase in soil moisture levels. The methylotrophic methanogenesis could 

be started with the use of methanol, an important methylated compound, which is produced 

by the degradation of pectin (WARNEKE et al., 1999; SCHINK et al., 1980) and is very 

common in low-oxygened soils and sediments (SCHINK; ZEIKUS, 1982). This substrate 

may be used by Bathyarchaeota and Methanomassillicoccus, as already reported by Evans and 

collaborators (2015), during the Brachiaria (pasture) degradation under floodplain soil 

conditions. The results described here indicated only an association between the relative 

abundance of these groups and the methane emission, and not the specific fraction that was 

produced for each taxonomic group. Furthermore, we do not discard the potential metabolic 

activity of Methanobacteriales, Methanocellales and Methanosarcinales, once they also were 

identified in the treatments which had more methane emission. New experimental assays, 

such as stable-isotope probing (SIP) (HUNGATE et al., 2015), new investigations about the 

metabolism of methanogens by metagenome-assembled genomes studies (EVANS et al., 

2015), and possibly metatranscriptomics are necessary to validate the role of methylotrophic 

methane metabolism in amazon soils. 

 The results reported here suggest that (I) the effect of forest-to-pasture conversion on 

soil microbial communities were intensified when the moisture levels were increased, 

affecting the archaeal community structure; (II) the archaeal communities from forest were 
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more resistant to the increase of the soil moisture levels, while the communities from pasture 

were more sensitive, enhancing the potential of methanogenesis in this soil. Furthermore, with 

the intensification of forest-to-pasture conversion in the Amazon region and the possible 

prolongation of the wet season as a result of climate change, may result in more methane 

production in the future, thus altering its global biogeochemical cycle. In this sense, a better 

understanding of the impacts of forest-to-pasture conversion on archaeal groups can help the 

development of a more sustainable management strategy, aiming to reduce methane 

emissions. 
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Appendix A. Supplementary Material of Chapter 3 

Supplementary Figure 1. Integrative computational approach applied to study the microbial functional traits in 

metagenomes datasets. Bottom-up approach to study the evolution, potential metabolism and distribution of the 

non-ammonia oxidizing Thaumarchaeota (Chapter 3) and to explore the genome size traits of the soil 

CPR/Patescibacteria bacteria phyla (Chapter 4). The metagenomic raw data (amazon soil metagenomes) used to 

reconstruct the Metagenome-Assembled Genomes (MAGs) in the Study 1 and Study 2 were the same. (I) 

Bottom-up approach to reconstruct MAGs from Amazon soil metagenomes. (II). Evolutionary analysis methods 

used to discovery new microbial genomes. These informations were updated in ‘High quality genomes’ 

database. (III) Biogeography distribution of specific Archaea/Bacteria groups using the Earth Microbiome 

Project database (IV) Manual curation by an expert team to check specific information about the evolution, 

potential metabolic pathways and environmental distribution. The manual curation of traits was very important 

step of this proposal, because was necessary a multidisciplinary team to interpret the amount of biological 

complexity and information generated in previously steps. 
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Supplementary Table 1. General information about the metagenomic Amazon floodplain forest dataset used in 

this study to reconstruct individual microbial genomes. 

Parameter  

Sample description Amazon floodplain forest sediment collected during the wet season 

Number of paired-end reads 156,056,159 

N50 (bp) 600 

Longest contig (bp) 248,200 

Total assembled length (bp)  6,164,645 

Number of assembled contigs > 10,000 

bp 
3,113 

Total assembled contigs length > 10,000 

bp 
28,923,227 

 

Supplementary Table 2. Potential non-AOA Thaumarchaeota genomes deposited on NCBI and JGI databases. 

DDBJ/ENA/GenBank Accession Completeness (%) Contamination (%) Reference 

GCA_002494485 86.83 0.97 PARKS et al., 2017 
GCA_002494565 62.86 0.00 PARKS et al., 2017 
GCA_002494985 79.21 0.00 PARKS et al., 2017 
GCA_002495205 66.23 2.91 PARKS et al., 2017 
GCA_002495315 91.91 0.00 PARKS et al., 2017 
GCA_002495905 87.08 0.00 PARKS et al., 2017 
GCA_002495965 68.77 0.97 PARKS et al., 2017 
GCA_002496625 72.65 1.94 PARKS et al., 2017 
GCA_002498345 69.90 2.91 PARKS et al., 2017 
GCA_002499005 84.14 0.97 PARKS et al., 2017 
GCA_002499525 81.91 0.00 PARKS et al., 2017 
GCA_002505305 75.24 0.97 PARKS et al., 2017 
GCA_002506605 69.74 0.97 PARKS et al., 2017 
GCA_002506665 92.23 0.00 PARKS et al., 2017 
GCA_002508305 82.45 0.00 PARKS et al., 2017 
GCA_002508395 95.15 0.00 PARKS et al., 2017 
GCA_003135575 92.89 2.91 WOODCROFT et al., 2018 
GCA_003139715 94.66 2.91 WOODCROFT et al., 2018 
GCA_003164815 99.03 1.94 WOODCROFT et al., 2018 
YP1 92.23 0.97 HUA et al 2018 

UBA223 87.08 0.00 ANANTHARAMAN et al 2016 
UBA164 84.14 0.97 ANANTHARAMAN et al 2016 
AD-613-B23 79.13 1.94 PLOMINSKY et al 2018 
RBG_16_49_8 71.25 0.00 ANANTHARAMAN et al 2016 
UBA160 69.74 0.97 ANANTHARAMAN et al 2016 
UBA183 66.23 2.91 ANANTHARAMAN et al 2016 
UBA57 62.86 0.00 ANANTHARAMAN et al 2016 
DRTY-7 45.63 0.00 HUA et al 2018 
AB-179-E04 33.50 0.00 RINKE et al 2013 
EAC691 30.58 0.00 ANANTHARAMAN et al 2016 
SP3992 18.93 0.00 ANANTHARAMAN et al 2016 

SAT139 16.02 0.00 ANANTHARAMAN et al 2016 
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Supplementary Table 3. Single marker genes used in the Phylogenomic analysis. 

Gene Protein 

rpb11 RNA pol L 
rpsI Ribosomal S9 
rplR Ribosomal L18e 
rplE Ribosomal L5 
rplN Ribosomal L14 
rpsM Ribosomal S13 
rpsJ Ribosomal S10 
rplP Ribosomal L16 
rpsS Ribosomal S19 
rplE Ribosomal L5 C 
RNA polymerase beta subunit RNA pol A bac 
rplM Ribosomal L13 

rplF Ribosomal L6 

SecY SecY 

 
 



94 

 

 

Supplementary Table 4. General features of metabolic pathway 

Number ENZYME NAME EC Number Saci Bog METABOLIC PATHWAY 

1 phosphoglucomutase 5.4.2.2 1 1 GLYCOLYSIS – EMP pathway 

2 glucose-6-phosphate isomerase 5.3.1.9 1 1 GLYCOLYSIS – EMP pathway 
3 6-phosphofructokinase 2.7.1.11 1 0 GLYCOLYSIS – EMP pathway 

4 fructose-bisphosphate aldolase 4.1.2.13 1 1 GLYCOLYSIS – EMP pathway 
5 glyceraldehyde 3-phosphate dehydrogenase 1.2.1.12/1.2.1.591 0 1 GLYCOLYSIS – EMP pathway 
6 phosphoglycerate kinase 2.7.2.3 0 1 GLYCOLYSIS – EMP pathway 

7 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 5.4.2.12 1 1 GLYCOLYSIS – EMP pathway 
8 enolase 4.2.1.11 1 1 GLYCOLYSIS – EMP pathway 
9 pyruvate kinase/pyruvate phosphate dikinase 1/2.7.9.1 1 1 GLYCOLYSIS – EMP pathway 

36 Fructose-1,6-bisphosphatase 3.1.3.11 0 1 GLUCONEOGENESIS 
      

10 pyruvate ferredoxin oxidoreductase 1.2.7.1 1 0 ACETATE FORMATION 
11 acetate---CoA ligase (ADP-forming) 6.2.1.13 1 0 ACETATE FORMATION 

      

12 AMP phosphorylase 2.4.2.57 0 0 AMP METABOLISM 
13 Ribose-1,5-bisphosphate isomerase 5.3.1.29 0 0 AMP METABOLISM 

14 Ribulose-1,5-bisphosphate carboxylase 4.1.1.39 1 0 AMP METABOLISM 
      

16 transketolase 2.2.1.1 1 1 PENTOSE PHOSPHATE PATHWAY 
17 ribose-phosphate pyrophosphokinase 2.7.6.1 1 1 PENTOSE PHOSPHATE PATHWAY 
18 ribose 5-phosphate isomerase 5.3.1.6 1 1 PENTOSE PHOSPHATE PATHWAY 

19 ribulose-phosphate 3-epimerase 5.1.3.1 0 1 PENTOSE PHOSPHATE PATHWAY 
      

      

14 NADH-quinone oxidoreductase  1.6.5.11 1 1 ELECTRON TRANSPORT CHAIN 

15 Succinate dehydrogenase/fumarate reductase 1.3.5.1  1 1 ELECTRON TRANSPORT CHAIN 
28 ubiquinol-cytochrome c reductase 1.10.2.2  0 1 ELECTRON TRANSPORT CHAIN 
29 cytochrome c oxidase cbb3-type subunit I 1.9.3.1 0 1 ELECTRON TRANSPORT CHAIN 

30 F-type H+-transporting ATPase  7.1.2.2/7.1.2.2. 1 1 ELECTRON TRANSPORT CHAIN 
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20 citrate synthase 2.3.3.1 0 1 TCA CYCLE 
21 aconitate hydratase 4.2.1.3 0 1 TCA CYCLE 

22 Isocitrate dehydrogenase 1.1.1.42/1.1.1.41 1 1 TCA CYCLE 

23 α-ketoglutarate dehydrogenase 
1.2.4.2/2.3.1.61/1.

8.1.4 0 1 TCA CYCLE 

24 Succinyl coenzyme A synthetase (succinate thiokinase) 6.2.1.5 0 1 TCA CYCLE 
25 Succinate dehydrogenase 1.3.5.1 1 1 TCA CYCLE 
26 Fumarase (or fumarate hydratase) 4.2.1.2 1 1 TCA CYCLE 

27 Malate dehydrogenase 1.1.1.37 1 1 TCA CYCLE 
      

31 long-chain acyl-CoA synthetase 6.2.1.3 0 1 FATTY ACID OXIDATION 
32 acyl-coA dehydrogenase 1.3.8.1 0 1 FATTY ACID OXIDATION 
33 Enoyl-CoA hydratase 4.2.1.17/4.2.1.150 0 1 FATTY ACID OXIDATION 

34 3-hydroxyacyl-CoA dehydrogenase 1.1.1.35 0 1 FATTY ACID OXIDATION 
35 3-ketoacyl-CoA thiolase 2.3.1.16 0 0 FATTY ACID OXIDATION 

      

37 acetyl-CoA carboxylase 6.4.1.2 0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

38 malonyl-CoA reductase (NADPH) 1.2.1.75 0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

39 malonate semialdehyde reductase (NADPH) 
1.1.1.298 

0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

40 3-hydroxypropionyl-CoA synthetase (AMP-forming) 
6.2.1.36 

0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

41 hydroxypropionyl-CoA dehydratase 
4.2.1.1.16 

0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

42 acryloyl-CoA reductase (NADPH) 
1.3.1.84 

0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 
43 propionyl-CoA carboxylase 6.2.1.2/3 0 0 CARBON FIXATION (3-
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HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

44 methylmalonyl-CoA epimerase 
5.1.99.1 

0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

45 methylmalonyl-CoA mutase 5.4.99.2 0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

46 succinyl-CoA reductase (NADPH) 
1.2.1.76 

0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

47 succinate semialdehyde reductase (NADPH) 
1.1.1.- 

0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

48 4-hydroxybutyryl-CoA synthetase (AMP-forming) 
6.2.1.- 

0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

49 4-hydroxybutyryl-CoA dehydratase 
4.2.1.1.20 

0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

50 crotonyl-CoA hydratase 4.2.1.17 0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

51 3-hydroxybutyryl-CoA dehydrogenase(NAD + ) 1.1.1.157 0 1 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 

52 acetoacetyl-CoA b-ketothiolase 2.3.1.16 0 0 

CARBON FIXATION (3-

HYDROXYPROPIONATE/4-

HYDROXYBUTYRATE CYCLE) 
      

53 Ribulose-1,5-bisphosphate carboxylase 4.1.1.39 1 0 

REDUCTIVE PENTOSE PHOSPHATE-

CYCLE (CALVIN-BENSON-BASSHAM 

CYCLE) 

54 Phosphoribulokinase 2.7.1.19 0 0 

REDUCTIVE PENTOSE PHOSPHATE-

CYCLE (CALVIN-BENSON-BASSHAM 

CYCLE) 

55 2-Oxoglutarate synthase  1.2.7.3 1 0 
REDUCTIVE CITRIC ACID CYCLE 

(ARNON-BUCHANAN CYCLE) 
56 ATP-citrate lyase  2.3.3.8 0 0 REDUCTIVE CITRIC ACID CYCLE 
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(ARNON-BUCHANAN CYCLE) 

57 Acetyl-CoA synthase 2.3.1.169 0 0 
REDUCTIVE ACETYL-COA PATHWAY 

(WOOD-LJUNGDAHL) PATHWAY 

58 CO dehydrogenase 1.2.7.4 0 0 
REDUCTIVE ACETYL-COA PATHWAY 

(WOOD-LJUNGDAHL) PATHWAY 
59 Malonyl CoA reductase 1.2.1.75 0 0 3-HYDROXYPROPIONATE BICYCLE 

60 Propionyl-CoA synthase 6.2.1.17 0 0 3-HYDROXYPROPIONATE BICYCLE 
61 Malyl-CoA lyase 4.1.3.24 0 0 3-HYDROXYPROPIONATE BICYCLE 

62 Acetyl-CoA synthase 2.3.1.169 0 0 
3-HYDROXYPROPIONATE-4-

HYDROXYBURYRATE CYCLE 

63 CO dehydrogenase 1.2.7.4 0 0 
3-HYDROXYPROPIONATE-4-

HYDROXYBURYRATE CYCLE 

64 methylmalonyl-CoA mutase 5.4.99.2 0 1 
3-HYDROXYPROPIONATE-4-

HYDROXYBURYRATE CYCLE 

65 4-HydroxybutyrylCoA dehydratase 4.2.1.120 0 0 
3-HYDROXYPROPIONATE-4-

HYDROXYBURYRATE CYCLE 

66 4-HydroxybutyrylCoA dehydratase 4.2.1.120 0 0 
DICARBOXYLATE-4-

HYDROXYBUTYRATE CYCLE 
      

      

67 amoA (PF12942) 1.14.99.39 0 0 AMMONIA OXIDATION 
68 amoB (PF04744) 1.14.99.39 0 0 AMMONIA OXIDATION 
69 amoC - 0 0 AMMONIA OXIDATION 

      

NAR Respiratory nitrate reductase (NirK) 1.7.5.1 0 0 ELECTRON TRANSPORT CHAIN 

 

 

Supplementary Table 5. General features of biosynthesis/or degradation of amino acids 

 Enzyme name EC Number Saci Bog 

 Pyruvate degradation family (alanine, serine, glycine, cysteine, trytophan)    

70 Alanine dexydrogenase 1.4.1.1 0 0 
71 Serine deaminase 4.3.1.17 0 0 

72 glycine betaine transmethylase 2.1.1.5 0 0 
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73 dimethylglycine dehydrogenase 1.5.8.4 0 0 
74 sarcosine oxidase 1.5.3.1 0 1 

75 serine hydroxymethyltransferase 2.1.2.1 1 1 
76 Serine desaminase 4.3.1.17 0 0 

77 cystathionine β-lyase 
4.4.1.1/4.4.1.2

8 1 1 
78 cysteine dioxygenase 1.13.11.20 0 0 
79 3-sulfinoalanine aminotransferase 2.6.1 1 1 
80 cysteine aminotransferase 2.6.1.3 0 0 
81 3-mercaptopyruvate sulfutransferase 2.8.1.2 0 1 
82 tryptophanase 4.1.99.1 0 0 
83 2.6.1.44 Alanine—glyoxylate transaminase 2.6.1.44 0 1 
84 2.6.1.45 Serine—glyoxylate transaminase 2.6.1.45 0 1 
85 4.1.2.5 L-threonine aldolase 4.1.2.5 0 0 
86 2.1.2.1 Glycine hydroxymethyltransferase 2.1.2.1 0 1 
87 4.3.1.19 Threonine ammonia-lyase 4.3.1.19 0 1 
88 Aspartate transaminase 4.4.1.24 1 1 

     

 Oxaloacetate and fumarate degradation family (aspartate, asparagine, tyrosine)    

99 Aspartate aminotransferase 2.6.1.1 0 0 
100 Malate dehydrogenase 1.1.1.37 0 1 
101 Aspartate transaminase 2.6.1.1 0 1 
102 Aspartate ammonia-lyase 4.3.1.1 0 0 
103 Asparginase 3.5.1.1 1 1 
104 Aspargine aminotransferase 2.6.1.14 1 0 
105 2-oxosuccinamate deamidase (Ps) 3.5.1 1 1 

106 Tyrosine aminotransferase 
2.6.1.5/2.6.1.2

7/2.6.1.57 0 1 
107 4-hydroxyphenylpyruvate dioxygenase 1.13.11.27 0 0 
108 Homogentisate oxygenase 1.13.11.5 0 0 
109 Maleylacetoacetate isomerase 5.2.1.2 0 0 
110 Fumarylacetoacetate hydrolase 3.7.1.2 0 0 

     

     

 α-ketoglutarate degradation family (glutamate, glutamine, proline, arginine,    
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histidine, aspartate, tryptophan) 

111 Glutamate decarboxylase 4.1.1.15 0 0 
112 Glutamic dehydrogenase 1.4.1.2 0 0 
113 Glutamate mutase 5.4.99.1 0 0 
114 Glutamate dehydrogenase 1.4.1.3 1 1 

115 Glutaminase 
3.5.1.2/3.5.1.3

8 0 0 
116 Glutamate synthase 1.4.1.13 1 0 
117 Proline dehydrogenase 1.5.5.2 0 0 
118 Arginine deiminase 3.5.3.6 0 0 
119 Arginase 3.5.3.1 0 0 
120 Ornithine aminotransferase 2.6.1.13 0 0 
121 L-glutamate-dehydrogenase 1.2.1.88 0 1 
122 Pyrroline-5-carboxylate reductase 1.5.1.2 1 0 
123 Ornithine cyclodeaminase 4.3.1.12 0 0 
124 Histidase 4.3.1.3 0 0 
125 Uroconase 4.2.1.49 0 0 
126 Imidazolone-5-propionate hydrolase 3.5.2.7 0 0 
127 Formiminoglutamate formiminohydrolase 3.5.3.8 0 0 
128 N-formylglutamate amidohydrolase 3.5.1.68 0 0 
129 Aspartate aminotransferase 2.6.1.1 0 1 
130 Malate dehydrogenase 1.1.1.37 0 0 

     

     

 Succinyl-CoA degradation family (valine, isoleucine, methionine)    

131 L-valine:2-oxoglutarate aminotransferase 2.6.1.42 0 1 
132 2-oxoisovalerate dehydrogenase 1.2.1.25 0 0 
133 Isobutyryl-CoA:FAD oxidoreductase 1.3.8 0 0 
134 3-hydroxy-isobutyryl-CoA hydro-lyase 4.2.1.17 0 1 
135 3-hydroxyisobutyrtyl-CoA hydrolase 3.1.2.4 0 0 
136 3-hydroxyisobutyrate dehydrogenase 1.1.1.31 1 1 
137 Methylmalonate-semialdehyde dehydrogenase 1.2.1.27 1 1 
138 L-isoleucine:2-oxoglutarate aminotransferase 2.6.1.42 0 1 
139 3-methyl-2-oxopentanoate dehydrogenase 1.2.1.25 0 0 
140 S-2-methylbutryl-CoA:FAD oxidoreductase 1.3.8.5 0 0 
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141 tiglyl-CoA hydrase 4.2.1.17 0 1 
142 3-hydroxy-2-methylbutyryl-CoA dehydrogenase 1.1.1.178 0 0 
143 2-methylacetoacetyl-CoA thiolase 2.3.1.16 0 0 
144 S-adenosylmethionine synthase 2.5.1.6 1 1 
145 Adenosylhomocysteinase 3.3.1.1 1 1 

     

 
Acetyl-CoA, acetoacetyl-CoA and acetoacetate degradation family (leucine, 

threonine, isoleucine, lysine, phenylalanine, tyrosine)    

146 L-leucine:2-oxoglutarate aminotransferase 
2.6.1.6/2.6.1.4

2 0 1 
147 4-methyl-2-oxopentanoate dehydrogenase 1.2.1.25 0 0 
148 Isovaleryl-CoA:FAD oxidoreductase 1.3.8.4 0 0 
149 3-methylcotonyl-CoA carboxylase 6.4.1.4 0 0 
150 3-methylglutaconyl-CoA hydratase 4.2.1.18 0 0 
151 Hydroxymethylglutaryl-CoA lyase 4.1.3.4 0 0 
152 Threonine aldolase 4.1.2.5/1.2.48 0 0 
153 Acetaldehyde dehydrogenase 1.2.1.10 0 0 
154 L-isoleucine:2-oxoglutarate aminotransferase 2.6.1.42 0 0 
155 3-methyl-2-oxopentanoate dehydrogenase 1.2.1.25 0 0 
156 S-2-methylbutyryl-CoA:FAD oxidoreductase 1.3.8.5 0 0 
157 Tiglyl-CoA hydrase 4.2.1.17 0 1 
158 3-hydroxy-2-methylbutyryl-CoA dehydrogenase 1.1.1.178 0 0 
159 2-methylacetoacetyl-CoA thiolase 2.3.1.16 0 0 
160 L-lysine monooxygenase 1.13.12.2 0 0 
161 Aminovaleramidase 3.5.1.30 0 0 
162 5-aminovalerate transaminase 2.6.1.48 0 0 
163 Glutarate semialdehyde dehydrogenase 1.2.1 0 1 
164 Succinyl-CoA-glutarate CoA-transferase 2.8.3.13 0 0 
165 Phenylalanine transaminase 2.6.1.1 0 0 
166 Phenylpyruvate 4.1.1.43 0 0 
167 Phenylacetaldehyde dehydrogenase 1.2.1.39 0 0 

168 Tyrosine aminotransferase 
2.6.1.5/2.6.1.5

7/2.6.1.57 0 1 

169 Fumarylacetoacetate hydrolase 3.7.1.2 0 0 
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Appendix B. Supplementary Material of Chapter 4 

 

Supplementary Material and Methods 

 

Candidate Phyla Radiation (CPR)/Patescibacteria in public soil metagenome datasets. We retrieve from 

Genbank (August 2018) all CPR/Patescibacteria identified in the Woodcroft and colaboradors (2018) study 

about Metagenome-assembled genomes (MAGs) from a thawing permafrost metagenome dataset (n=19). Up to 

date, this was the most complete soil MAGs dataset.  A specific 51 CPR/Patescibacteria single-marker copy 

genes was used to re-estimate the completeness and contamination parameters and retrieve only the genomes 

with the high-quality draft (completeness > 90% and contamination < 5%) recommended by the Minimum 

information about a metagenome-assembled genome (MIMAG) of bacteria and archaea (BOWERS et al., 2017). 

Due to the reduced size of the CPR/Patescibacteria genomes, during the evolution, some universal single-marker 

genes were lost, and to get a better estimation of the genome quality, we selected only all single-marker genes 

(51 genes) were presented in all complete CPR/Patescibacteria genomes deposited on NCBI (Genome 

Taxonomy Database classification/August 2018) (Supplementary Table 6). To build the specific single-marker 

gene database, we calculated the completeness and contamination using the universal single-maker genes HMMs 

dataset from Albertsen and collaborators (2013). The CheckM (PARKS et al., 2015) was used to identify the 

specific CPR/Patescibacteria single-marker copy and we considered to the downstream genome quality analysis 

only the genes which were presented in all complete genomes. To complement our comparative analyzes, we 

also used three high-quality soil CPR/Patescibacteria reconstructed by KROEGER AND COLLABORATORS 

(2018). 

 

Cattle-pasture soil sampling, DNA extraction, and metagenomic sequencing. The soil was collected in an 

adjacent area of the Tapajós National Forest, in the state of Pará, Eastern Amazon. The topsoil 0-10 cm from a 

cattle-pasture was collected in July 2015. This soil was used in a microcosm experiment (VENTURINI, 2019; 

unpublished data) to increase the soil moisture level to 100% at field capacity under 30-day. Total DNA was 

extracted using PowerLyzer PowerSoil DNA Isolation Kit (MO Bio Laboratories,Carlsbad, CA, USA). The 

quality and quantity of the DNA samples were evaluated using agarose gel electrophoresis stained with ethidium 

bromide and a Nanodrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The 

metagenome was sequenced on an Illumina HiSeq 2500 platform (2x 250 bp) (Illumina, San Diego, CA, USA) 

at Novogene Corporation, Beijing, China. 

 

Metagenomic assembly, binning and quality control.  To remove the low-quality reads (parameters: Phred 

score (<30) and minimum size (<100 bp)) the SICKLE software (JOSHI; FAUS, 2011) was used. The cattle-

pasture metagenome was assembled in Megahit (LI et al., 2015) with default parameters (Supplementary Table 

1). The downstream analysis was performed according to as in Lemos et al. (2017). Briefly, contigs smaller than 

10,000 bp were removed from downstream analyses and coverage was calculated using Bowtie2 (LANGMEAD; 

SALZBERG, 2012). Stringent length filtering parameters were used in order to reduce contamination and 

remove chimeric contigs. Binning was performed with MaxBin 2.0 (WU et al., 2016) and quality control metrics 
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(completeness/contamination) were calculated with CheckM (PARKS et al., 2015). Taxonomy was assigned 

using the 16S rRNA gene with the RDP Classifier software (WANG et al., 2007) and the SILVA database 

(version 32) (QUAST et al., 2013). Additional phylogenomic information was inferred by the GTDB-Tk 

software and GTDB (Genome Taxonomy Database) (PARKS et al., 2018).  

Functional annotation and multivariate statistics. We annotated 891 microbial genomes, including 857 

deposited on RefSoil database (CHOI et al., 2017), 18 from the permafrost metagenome dataset (WOODCROFT 

et al., 2018), ten symbiotic/parasitic microbial genome, three soil CPR/Patescibacteria genomes, the Udaeobacter 

copiosus (BREWER et al., 2017) and two new CPR/Patescibacteria described here (Supplementary Table 4), 

using the PROKKA pipeline (SEEMANN et al., 2014) to identify the ORFs (Open Reading-frames) and the 

COG (cluster of orthologous groups) categories. The query proteins were blasted with RPS-BLAST+ (Reverse 

Position-Specific BLAST) against NCBI Conserved Domain Database (CDD). The multivariate analysis was 

performed on R platform. 
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Supplementary Table 1. General informations about the metagenomic dataset used in this study to reconstruct 

microbial genomes. 

Parameter Pasture metagenome 

Sample description Pasture soil incubated by 30-days under a moisture-controlled experiment. 
Location 2°25′48″S 54°43′12″W 
Number of paired-end reads 

 
149,386,627 

 
Number of assembled contigs 6,231,429 
N50 (bp) 719 
Longest contig (bp) 321,699 
Total assembled length (bp) 4,272,955,462 
Number of assembled contigs ≥ 10,000 bp 7,309 

Total assembled contigs length ≥ 10,000 bp 122,505,934 

 

 
Supplementary Table 2. Genomic features of two new CPR/Patescibacteria 

Genome (bin) name Curupira Caipora 

Phyla Patescibacteria Patescibacteria 

Class/Order/Family 
Microgenomatia/Shapirobacterales/UBA

12405 Doudnabacteria/UBA920/UBA920 
Estimated Genome Size (bp) 1,306,057 1,302,885 
Number of contigs 23 24 
Best hit (16S rRNA) 

(NCBI Accession Number) 
Uncultured bacterium clone YH79 

[JQ861406.1] 
Uncultured bacterirum clone C-134 

[KC836053] 
Coverage/Identity (%) 97/92 97/93 
Estimated Completeness (%) 100.0 100.0 
Estimated Contamination (%) 0.0 0.0 
G+C content (%) 34.33 43.01 
Maximum scaffold length (bp) 321,669 192,499 
N50 contig length 91,855 67,807 

CDS number 1,276 1,332 
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Supplementary Table 3. General features of metabolic pathway. 

Pathway Genes COG Caipora Curupira GCA_003151615.1 
EMP pathway Glucokinase COG0837 0 0 0 

 Glucose-6-phosphate isomerase COG0166 1 0 0 

 
Glucose-6-phosphate 1-

dehydrogenase COG0364 1 0 0 
 Phosphofructokinase COG0205 0 0 0 
 Fructose-bisphosphate aldolase COG3588 0 0 1 
 Triosephosphate isomerase COG0149 1 0 1 

 
Glyceraldehyde-3-phosphate 

dehydrogenase COG0057 1 1 0 
 Phosphoglycerate kinase COG0126 0 0 1 
 Phosphoglycerate mutase COG0696 2 1 1 
 Enolase COG0148 1 1 1 
 Pyruvate kinase COG0469 1 0 0 
 Phosphoenolpyruvate synthase COG0574 2 2 0 

Pentose phosphate patway Transketolase COG3959 0 0 1 
 ribulose-5-phosphate 3-epimerase COG3623 0 0 1 
 Ribose-5-phosphate isomerase COG0120 0 0 0 
 Ribokinase COG0524 2 1 0 

Tricarboxylic acid cycle Citrate synthase COG0372 0 0 0 
 Aconitase COG1048 0 0 0 
 Isocitrate dehydrogenase COG0538 0 0 0 

 
2-oxoglutarate dehydrogenase E1 

component COG0567 0 0 0 
 Succinyl-CoA synthetase COG0045 0 0 0 
 Succinate dehydrogenase COG0479 0 0  

 Fumarase COG0114 0 0 1 

Eletron transport 

NADH-quinone oxidoreductase COG1034 0 0 0 
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Succinate dehydrogenase/fumarate 

reductase COG2009 0 0 0 

 

ubiquinol-cytochrome c reductase COG5605 0 0 0 

 
cytochrome c oxidase cbb3-type 

subunit I COG2993 0 0 0 
 F-type H+-transporting ATPase COG0356 0 0 0 

Oxidative stress Superoxide dismutase COG0605 1 1 1 
 Catalase COG0376    

 
Peptide methionine sulfoxide 

reductase MsrA COG0225 1 0 4 
Type IV pili      

 
Type IV fimbrial assembly, ATPase 

PilB COG2804 2 2 0 
Protein translocation Sec 

dependent SecA COG0653 2 1 1 
 SecY COG0201 1 1 1 
 SecE COG0690 1 1 1 
 SecG COG1314 0 0 0 
 YidC COG0759 0 0 0 
 Sortase COG3764 0 0 0 

Sugar degradation Alpha-amylase COG1449    

 Glucoamylase COG3387 0 0 0 

 
Beta-glucosidase/6-phospho-beta-

glucosidase/beta-galactosidase COG2723 1 0 0 
 Beta-glucosidase (EC 3.2.1.21) COG2723 1 0 0 

Amino acids biosynthesis Asparagine (aspartate--ammonia 

ligase) COG2502 0 0 0 

 
asparagine synthase (glutamine-

hydrolysing) COG0367 0 0 0 
 Glutamine (glutamine synthetase) COG0174 0 0 0 

 Proline (glutamate 5-kinase) COG0263 0 0 0 

 

glutamate-5-semialdehyde 

dehydrogenase COG0014 0 0 0 
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 pyrroline-5-carboxylate reductase COG0345 0 1 0 

 

Arginine (ornithine 

carbamoyltransferase) COG0078 0 0 0 
 argininosuccinate synthase COG0137 0 0 0 
 argininosuccinate lyase COG0165 0 0 0 
 Cysteine (serine O-acetyltransferase) COG1045 0 0 0 
 cysteine synthase COG0031 0 0 0 
 O-acetylhomoserine (thiol)-lyase COG2873 0 0 0 
 Methionine (aspartate kinase) COG0527 0 0 0 

 

aspartate-semialdehyde 

dehydrogenase COG0136 0 0 1 

 

5-

methyltetrahydropteroyltriglutamate--

homocysteine methyltransferase COG0620 0 0 0 

 

Serine (D-3-phosphoglycerate 

dehydrogenase / 2-oxoglutarate 

reductase) COG0111 0 0 0 

 phosphoserine aminotransferase COG1932 0 0 0 

 Threonine (aspartate kinase) COG0527 0 0 0 

 

aspartate-semialdehyde 

dehydrogenase COG0136 0 0 1 
 threonine synthase COG0498 0 0 0 

 Lysine (aspartate kinase) COG0527 0 0 0 
 diaminopimelate decarboxylase COG0019 1 0 1 

 

Tryptophan (3-dehydroquinate 

dehydratase I) COG0710 0 0 0 

 

3-phosphoshikimate 1-

carboxyvinyltransferase COG0128 0 0 0 

 

Phenylalanine/Tyrosine (chorismate 

mutase) COG1605 0 0 0 
 aromatic-amino-acid transaminase COG1448 0 0 0 
 Alanine (cysteine desulfurase) COG1104 1 1 2 

 

Histidine (ATP 

phosphoribosyltransferase) COG0040 0 0 0 

 histidinol dehydrogenase COG0040 0 0 0 
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Glycine (glycine 

hydroxymethyltransferase) COG0112 1 1 1 
 Valine (valine transaminase) COG3977 0 0 0 

 

Tyrosine (Aspartate/tyrosine/aromatic 

aminotransferase) COG1448 0 0 0 

Fermentation 
Lactato (Malate/lactate 

dehydrogenase) COG0039 1 1 1 
De novo synthesis of 

pyrimidine 
Carbamoyl phosphate synthetase 

(CPS, EC 6.3.5.5) COG0458 0 0 0 

 

Aspartate transcarbamoylases (ATC, 

EC 2.1.3.2) COG0540 0 0 0 
 Dihydroorotase (DHO, EC 3.5.2.3) COG0418 0 0 0 

 

Dihydroorotate dehydrogenase 

(DODH; EC 1.3.99.11) COG0167 1 0 1 

 

Uridine 5′-monophosphate synthase 

(UMPS, EC 2.4.2.10 plus 4.1.1.23) COG0284 1 0 0 

 UMP kinase (UMPK, EC 2.7.4.4) COG0572 0 0 0 

 

Nucleoside diphosphate kinase 

(NDPK, EC 2.7.4.6) COG0105 1 1 1 

 CTP synthetase (CTPS, EC 6.3.4.2) COG0504 1 1 1 
De novo synthesis of 

purine 
Phosphoribosylpyrophosphate 

synthetase COG0462 0 1 1 
 IMP dehydrogenase COG0516 0 0 0 
 GMP synthetase COG0518 1 0 1 

 sAMP synthetase COG0104 0 0 0 

 sAMP lyase COG0015 0 0 0 
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Supplementary Table 4. Single-cell genomes described by Choi et al. (2016) 

 

NCBI ID 
Total Contigs  

> 2,200 bp 
Total Assembled  

Length (bp) 
Maximum Contig  

Length (bp) Completeness (%) Contamination (%) 
LSSX00000000 200 2.503.189 85.609 47.75 0.0 
LSSY00000000 69 709.610 29.805 0.0 0.0 
LSSZ00000000 126 1.547.648 52.772 4.17 0.0 
LSTA00000000 93 1.170.883 60.329 22.86 0.0 

LSTB00000000 86 1.314.140 84.789 41.18 0.0 
LSTC00000000 162 2.314.649 140.388 52.67 1.21 
LSTD00000000 316 4.337.762 105.657 28.69 0.0 

LSTE00000000 125 1.462.098 57.674 66.95 0.0 
LSTF00000000 123 2.058.214 85.098 56.24 0.74 
LSTG00000000 50 281.276 17.877 9.48 0.0 

LSTH00000000 237 2.314.199 44.079 33.2 0.0 
LSTI00000000 82 995.360 43.153 24.14 0.0 
LSTJ00000000 154 1.513.572 42.901 20.85 0.0 

LSTK00000000 69 615.657 28.470 4.17 0.0 
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Appendix C. Supplementary Material of Chapter 5 

 

Supplementary Figure 

 

 

Supplementary Figure 1. Sampling map from Belterra municipality, in the state of Pará, Brazil.  Soil 

sampling was carried out in the Tapajós National Forest (3°17'44.4"S, 54°57'46.7"W) a well-preserved primary 

forest and a cattle pasture (3°18'46.7"S, 54°54'34.8"W) next to the forest.  

 

Supplementary Table 1. Accumulated emissions of methane CH4 (ng C-CH4 soil g-1) in forest and pasture 

soils from Eastern Amazon under different moisture levels (control, 60, 80, and 100% of field capacity) in 

a microcosm experiment carried out for 30 days. Adapted and reprinted with permission from VENTURINI 

(2019). 

Treatment Forest Pasture 

Control -693,4±415,1* 337,3±242,4 

60% -1042,2±715,6 -1909,7±1378,8 

80% -294,4±345,5 68,6±374,5 

100% 287,3±298,1 8013,7±1379,3 

*Mean±Standard error 
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