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ABSTRACT 

 

OLIVEIRA, T. C. Variability of soil hydraulic properties and its impact on agro-

hydrological model predictions. 2019. 90 p. Tese (Doutorado) – Centro de Energia Nuclear 

na Agricultura, Universidade de São Paulo, Piracicaba, 2019. 

 

Agro-hydrological models have been widely used to predict and simulate soil water balance 

components and crop yield with reliable results. These models provide detailed water and 

energy balances and enables simulating scenarios with distinct land management strategies, 

environmental and climate conditions. However, they require many input parameters, 

especially those related to soil water retention and hydraulic conductivity functions. These input 

parameters are prone to variation due to the determination methods, related errors and 

uncertainties, and soil variability. In this thesis we aimed to (1) analyze the suitability of inverse 

modelling as an alternative to traditional methods to estimate soil hydraulic properties using 

water content data obtained with Frequency Domain Reflectometry (FDR) sensors in a field 

experiment; (2) analyze the influence of the Mualem-van Genuchten parameters (M-VG) 

uncertainty on water balance components and crop yield predicted by the SWAP model for a 

soil under maize under rainfed conditions by uncertainty analysis using two sampling methods. 

One method used Monte Carlo Random Sampling from normal distribution based on standard 

errors of the hydraulic parameters obtained from inverse modelling (MCRS), and the other used 

Monte Carlo Latin Hypercube Sampling (MCLHS). Our results from the inverse modelling 

showed that n and Ks from both horizons, and θr from the Bt horizon, were estimated with low 

accuracy. Low values of field water contents in the A horizon led to a lower estimate of θr 

compared to the laboratory method. In the Bt horizon, the small observed range of field water 

contents contributed to an unreliable estimation of parameters θr and n. The MCRS and MCLHS 

sampling methods provided distinct ranges and probability density distributions shape for 

n-parameter, and simulates runoff (Roff), soil evaporation (Esoil) and bottom flux (qbot). The 

M-VG parameters from MCRS may enhanced the uncertainty of simulated results, whereas 

MCLHS provided more reliable M-VG parameters combinations, and therefore, simulated 

results. The uncertainty analysis may provide useful information about the uncertainties of 

model SWAP predictions and should be preferred over a mere deterministic approach, which 

often provided results diverging those obtained from probabilistic methods. Moreover, the 

uncertainty analysis is a key tool for more reliable interpretation of the water balance and crop 

yield in agro hydrological systems and should be considered in agro-modelling studies. 

 

Keywords: Soil hydraulic properties. Inverse modelling. Stochastic realization. Uncertainty 

analysis. SWAP model. 
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RESUMO 

 

OLIVEIRA, T. C. Variabilidade das propriedades hidráulicas do solo e seu impacto nas 

previsões de um modelo agro-hidrológico. 2019. 90 p. Tese (Doutorado) – Centro de Energia 

Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 2019. 

 

Modelos agro-hidrológicos têm sido amplamente utilizados para predizer e simular os 

componentes do balanço hídrico e o rendimento de culturas gerando resultados confiáveis. 

Esses modelos fornecem balanços hídrico e de energia detalhados, além de permitir a simulação 

de cenários adotando diferentes estratégias de manejo do solo e em diversas condições 

ambientais e climáticas. No entanto, eles exigem um grande número de parâmetros de entrada, 

especialmente aqueles relacionados às funções de retenção de água e de condutividade 

hidráulica do solo. Por sua vez, esses parâmetros são sujeitos a variações provenientes dos 

métodos dos determinação, dos erros e incertezas relacionados a eles, e da variabilidade do 

solo. Nessa tese objetivou-se (1) analisar a aptidão da modelagem inversa como uma alternativa 

aos métodos tradicionais para estimar as propriedades hidráulicas do solo utilizando dados de 

conteúdo de água obtidos por sensores de Reflectometria no Domínio da Frequência (FDR) em 

um experimento de campo; (2) analisar a influência da incerteza dos parâmetros de Mualem-van 

Genuchten (M-VG) nos componentes do balanço hídrico e no rendimento de culturas preditos 

pelo modelo de SWAP para a cultura do milho sem irrigação por meio de análise de incerteza 

utilizando dois métodos de amostragem. Um método utilizou amostragem aleatória de Monte 

Carlo baseado nos erros padrão dos parâmetros de M-VG obtidos pela modelagem inversa 

(MCRS) e a outra utilizou o método de Monte Carlo de amostragem por Hipercubo Latino 

(MCLHS). Os resultados da modelagem inversa mostraram que os parâmetros n, Ks e θr do 

horizonte Bt, foram estimados com baixa precisão. Os baixos valores de conteúdo de água do 

solo no horizonte A resultaram em valores menores de θr em comparação com o método de 

laboratório. No horizonte Bt, a estreita amplitude do conteúdo de água contribuiu para uma 

estimativa pouco confiável dos parâmetros θr e n. Os dois métodos de amostragem resultaram 

em amplitudes e formatos de funções de densidade de probabilidade distintas para o n, e 

escoamento superficial, evaporação do solo e drenagem profunda simulados. O conjunto de 

parâmetros hidráulicos de M-VG gerados pelo MCRS podem ter aumentado a incerteza dos 

resultados simulados, enquanto o MCLHS gerou combinações de parâmetros mais prováveis e 

resultados simulados mais confiáveis. A análise de incerteza pode fornecer informações 

importamtes sobre as incertezas nas predições do modelo SWAP e deve ser preferida em 

detrimento à uma abordagem determinística, que geralmente fornece resultados divergentes dos 

gerados pelo método probabilístico. Além disso, a análise de incerteza é uma ferramenta-chave 

para a interpretação mais confiável do balanço de água no solo e do rendimento de culturas e 

deve ser adotado nos estudos de modelagem agro-hidrológica. 
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1 INTRODUCTION 

 

Prediction of water movement in soils is one of the most studied subjects in soil physics. 

The importance of this subject is attached to hydrological cycle and agricultural systems, where 

processes related to availability of water to plants, transport of solutes in the soil, irrigation and 

drainage management, soil and water conservation, plant transpiration, crop yield, oxygen and 

drought stresses, among others, are mostly driven by soil water dynamics. Moreover, this 

importance extend far beyond hydrology and agriculture, as it has a fundamental role in 

providing ecosystem services to human well-being (VEREECKEN et al., 2016). 

In this context, many hydrological models have been developed aiming to understand 

the related process and provide reliable information which may be used for supporting water 

resources management strategies and crop yield optimization in agricultural operations (e.g., 

CERES-maize, JONES; KINIRY, 1986; MACROS; PENNING DE VRIES et al., 1989; 

WAVE; VAN-CLOOSTER et al., 1996; SWAP; KROES et al., 1998; HYDRUS 1-D, 

ŠIMŮNEK et al., 1998; SWAT; ARNOLD et al., 1998; ARNOLD; FOHRER, 2005; 

WOFOST; DE WIT et al., 2019). These models enable simulating scenarios with distinct land 

management strategies, different environmental and climate conditions, and allow integration 

with other models (BETTS, 2005). However, although many of these models contain detailed 

process-based descriptions of involved processes, they implicitly are a simplification of the 

natural system, and include assumptions and generalizations in their structure and 

parameterization. 

Among available hydrological models available, Richards-equation process-based 

agro-hydrological models provide detailed water and energy balances in the 

soil-water-atmosphere system with reliable results (VAN DAM et al., 2008). Nonetheless, they 

require large number of input parameters, especially those related to soil hydraulic properties, 

such as the water retention and unsaturated hydraulic conductivity functions. These parameters 

are prone to variation due to the hydraulic properties determination methods (LEKSHMI; 

SINGH; BAGHINI, 2014), related errors and uncertainties (HUPET; VAM DAM; 

VANCLOOSTER, 2004), and soil variability (HEUVELINK; WEBSTER, 2001), affecting 

agro-hydrological modelling results. 

The soil hydraulic properties variability has been extensively studied by soil scientists, 

but only a few investigated uncertainty propagation of agro-hydrological model predictions 

(e.g., BARONI et al., 2010, BENNETT et al., 2013). Since the soil hydraulic properties 

determination are often very local and the number of replicates are limited, the characterization 
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of the spatial hydraulic properties may be misestimated and model predictions are vulnerable 

to errors. Therefore, model predictions should be interpreted considering both uncertainty of 

input parameters and hydraulic properties variability for more reliable interpretation of the 

water balance and crop yield in agro hydrological systems. 

In order to obtain more insights in the soil hydraulic properties determination and the 

effect of its uncertainty on agro-modelling predictions, in this thesis we report the estimation 

of soil hydraulic properties by inverse modelling as an alternative to traditional laboratory 

methods using the HYDRUS 1-D (ŠIMŮNEK et al., 1998) (Chapter 2), and analyze the 

influence of the hydraulic properties uncertainties on the SWAP (KROES et al., 1998) 

predictions by uncertainty analysis. 

In Chapter 2, the inverse modelling was performed to obtain hydraulic properties using 

water content data measured by Frequency Domain Reflectometry (FDR) sensors during six 

months at two depths in a small field experiment. Part of the monitoring period was used to 

calibrate Mualem-van Genuchten parameters and the remaining period was used to validate the 

modelling results comparing simulated water contents to observed ones. The HYDRUS 1-D 

was used to inversely estimate the Mualem-van Genuchten parameters and associated 

uncertainties, then further applied in uncertainty analysis of SWAP model predictions. 

In chapter 3, the water balance components and crop yield were simulated for  

a 30 years period (1987–2017) for a rainfed maize crop growing every year from October 15 

until March 15 by stochastic realizations of SWAP model. Two sampling methods were used 

to generate different sets of Mualem-van Genuchten parameters, one using standard errors 

obtained from the inverse modelling, and the other using the Latin Hypercube Sampling. A 

comparison between measured and simulated water contents was made. 

Finally, considerations and general conclusion regarding agro-hydrological modelling 

were made in Chapter 4. 
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2 DETERMINING HYDRAULIC PROPERTIES OF A TROPICAL SOIL BY 

INVERSE MODELLING OF FIELD WATER CONTENTS 

Abstract 

Soil water retention and hydraulic conductivity functions are most commonly determined by 

laboratory experiments with a pressure device based on hydrostatic equilibrium. However, 

these methods may be questioned with respect to sample representativeness and the validity of 

the equilibrium between soil sample and device. As an alternative, inverse modelling of 

transient conditions has been applied to estimate soil hydraulic properties. In this paper, we 

aimed to analyze the suitability of inverse modelling to estimate soil hydraulic properties using 

water content data obtained with FDR sensors in a field experiment, and compare these results 

with laboratory method. Our results showed that the Mualem-van Genuchten parameters n and 

Ks from both horizons were estimated with low accuracy by inverse modelling. Possibly, water 

content data used for inverse modelling did not provide enough information to estimate these 

parameters with high accuracy. Low values of water content found in the field in the A horizon 

led to a lower estimate of θr compared to the laboratory method which is limited to 15000 cm 

of suction. In the Bt horizon, the small observed range of field water contents contributed to 

unreliable estimation of parameters θr and n. Ks estimation for both horizons was negatively 

affected when using a fixed value for the tortuosity exponent (λ = 0.5). Substituting some of the 

parameters by known or measured values together with a wider range of observed water 

contents or matric potentials may improve parameter estimation. Hydraulic modelling based on 

the Richards equation using inverse modelling led to apparently more reliable results than 

traditional laboratory methods. This is especially the case for the surface layer subject to 

atmospheric evaporative demand that may lead to air-dry values. 

Keywords: Soil hydraulic properties. Inverse modelling. Ferralic Nitisol. HYDRUS 1-D. 

2.1 Introduction 

Temporal and spatial prediction of unsaturated flow in soils using the Richards equation 

relies on the soil hydraulic functions, specifically water content (θ) and unsaturated hydraulic 

conductivity (K) versus matric potential (h). Whereas soil hydraulic properties may be predicted 

from texture and other available soil survey information using pedotransfer functions, these 

functions contain a high level of statistical uncertainty (VEREECKEN et al., 2010). Therefore 

measurement of hydraulic properties is, when possible, preferred. 

The most common way to determine the soil water retention curve (SWRC) is from 

outflow experiments by establishing a hydrostatic equilibrium using a pressure plate extractor 

or hanging water column. Although widely used, results obtained by these methods should be 

interpreted with care, as they have their limitations. In the first place, soil samples may not be 

representative of field conditions. To represent the respective soil layer, samples should be 

undisturbed. In practice, this is hard to be accomplished. Furthermore, any sampling strategy 



28 
 

deals with matters related to representativeness and spatial variability (MITTELBACH; 

SENEVIRATNE, 2012). 

Establishing a real hydrostatic equilibrium poses another challenge to these methods. 

It may take months before such an equilibrium is established between a pressure or suction 

device and the soil sample, especially at high pressures for fine-textured soils (BITTELLI; 

FLURY, 2009; GUBIANI et al., 2012). Moreover, field samples are under overburden pressure, 

whereas soil samples are not. This may result in an unnatural swelling of the soil sample 

(SOLONE et al., 2012). In laboratory outflow experiments, high pressure gradients are 

established when a large suction is applied on a saturated soil sample, whereas in field 

conditions, contrarily, large pressure gradients occur when the soil is moistened from a dry 

condition (VAN DAM; STRICKER; DROOGERS, 1994). These facts make the results from 

laboratory outflow experiments sometimes unreliable or not representative for field soil 

conditions. 

In the last decades, inverse modelling has been used as an alternative to the traditional 

laboratory methods to overcome some of these problems (KOOL; PARKER;  

VAN GENUCHTEN, 1985). Finite difference numerical methods are not restricted by 

simplifications to solve the Richards equations and allow the use of flexible boundary and initial 

conditions (VAN DAM; STRICKER; DROOGERS, 1994). This approach enables a rapid and 

cost-effective soil hydrological characterization with high reliability (VRUGT et al., 2004) and 

hydraulic properties uncertainties can readily be assessed. Additionally, both retention and 

hydraulic conductivity functions can be estimated simultaneously from transient flow data. 

However, the inverse solution of Richards equation has its drawbacks. The nonlinearity 

of soil hydraulic functions makes the parameter optimization a complex computational task. 

The correlation of hydraulic parameters and the nonuniqueness of the inverse solution may lead 

to a non-representative set of hydraulic parameters, especially when a large number of 

parameters are estimated at the same time (ŠIMŮNEK; VAN GENUCHTEN; SEJNA, 2012). 

Convergence is another issue, as nonlinear optimization often does not converge at first attempt 

and further investigation to detect inaccuracies is needed. 

The suitability of inverse modelling for hydraulic properties estimation relies on issues 

which directly affect the well posedness of the solution: type of transient experiment and kind 

of initial and boundary conditions (ŠIMŮNEK; VAN GENUCHTEN, 1996); quality of data in 

terms of appropriate quantity and informative observational data (ECHING; HOPMANS, 

1993); appropriate model to describe soil hydraulic properties (ZURMÜHL; DURNER, 1998); 

construction of multiple sources of information in an objective function (VAN DAM; 
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STRICKER; DROOGERS, 1994) and, the optimization algorithm used to find the global 

minimum and uncertainties associated to estimated parameters (VRUGT et al., 2003). 

In many studies, numerical solution of the Richards equation in laboratory experiments 

have been applied with good results (VAN DAM.; STRICKER; DROOGERS, 1992; 1994; 

ECHING; HOPMANS, 1993; ŠIMŮNEK; VAN GENUCHTEN, 1996; ARORA; MOHANTY; 

MCGUIRE, 2011; PINHEIRO; DE JONG VAN LIER; METSELAAR, 2017), however, 

applications in field experiments are more complex. Soil spatial variability  

and the uncertainties in boundary conditions have been the major concerns of this method 

(VRUGT et al., 2004; SCHARNAGL et al., 2011; MAVIMBELA; VAN RENSBURG, 2013; 

LE BOURGEOIS et al., 2016). 

In this paper, we aimed to analyze the suitability of inverse modelling to estimate soil 

hydraulic properties at field scale using spatially distributed water content data measured in the 

field. We also compared the hydraulic properties derived from inverse modelling with those 

obtained by laboratory methods. Finally, we evaluate the capability of hydraulic properties 

derived from both methods to simulate surface and bottom flux using a Richards equation-based 

hydrological model. 

2.2 Material and Methods 

2.2.1 Site description 

An experimental plot with an extension of 10 x 25 m (230 m2) was used in 

Piracicaba/Brazil (22° 42' 26'' S; 47° 37' 22'' W). Within the plot, ten sites were chosen for soil 

hydraulic characterization (Figure 2.1). The area had previously been cultivated with 

Brachiaria sp., but during the experiment it was maintained without vegetation. Results from 

Site #2 were eliminated from the analysis, as it appeared to contain a compacted spot with 

diverging hydraulic properties. The soil of the area is classified as a Ferralic Nitisol 

(IUSSWORKING GROUP WRB, 2015). Information about some soil characteristics is found 

in Table 2.1. 
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Figure 2.1 Schematic representation of the area with the 9 studied sites. Each site contains FDR 

sensors at its center (cross) for water content monitoring (θf), and four sampling 

locations in the corners for water retention characterization (dots) (n = 4). Site #2 

(in gray) was not used in this study 

 

 

Table 2.1 Particle size distribution and particle density (p) (n = 9), bulk density (b) (n = 36), 

total porosity (TP, calculated from densities) (n = 36), textural class, and type of 

structure for A and Bt horizons (mean values with standard deviations between 

brackets) 

Horizon 
Depth 

Particle size distribution (mm) 

p b TP Texture 

class 

Type of 

structure 

Clay Silt  Sand 

<0.002 mm 0.002-0.05 mm 0.05-2 mm 

cm kg kg-1 kg m-3 m3 m-3 

A 0 - 20 
0.37  

(0.03) 

0.23  

(0.05) 

0.40  

(0.05) 

2932  

(173) 

1330  

(123) 
0.52 Clay Loam Granular 

Bt 20 - 40+ 
0.55  

(0.02) 

0.16  

(0.04) 

0.29  

(0.05) 

2971  

(35) 

1585  

(89) 
0.47 Clay 

Blocky 

angular 

 

Meteorological data including radiation, minimum and maximum temperature, vapor 

pressure, wind speed, and rainfall were obtained from the University of São Paulo weather 

station in Piracicaba/Brazil (22° 42' 10'' S; 47° 37' 25'' W, altitude 546 m), at about 500 m from 

the experimental area (Figure 2.2). The local climate is of the Koeppen Cwa type, with a dry 

winter from May to September. 
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Figure 2.2 Main daily rainfall, solar radiation and air temperature as observed at the University of 

São Paulo weather station in Piracicaba/Brazil during the period July - December 2016 

 

2.2.2 Soil hydraulic parameterization 

Soil hydraulic characterization of the nine sites of the experiment was performed using 

standard laboratory suction table and pressure plate extractor (in the following identified by 

LM), and by inverse modelling (identified by IM). 

Soil hydraulic properties were described using the Van Genuchten (1980) equations 

with the Mualem restriction (MUALEM, 1976): 
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where θ, θr and θs are water content, residual water content and saturated water content 

(cm3 cm- 3), respectively; h is matric potential (cm); α (cm-1), n (-), and λ (-) are fitting 

parameters; K and Ks are hydraulic conductivity and saturated hydraulic conductivity, 

respectively (cm d- 1). 
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Laboratory method (LM) 

Four undisturbed soil samples (5 cm diameter and 3 cm height) were collected at each 

of the 9 sites from A and Bt horizons, respectively at 0.00-0.10 and 0.30-0.40 m depths.  

In the laboratory, samples were saturated with an aqueous solution of 0.005 M of CaSO4 by 

capillarity during 24h (DANE; HOPMANS, 2002). 

Water contents were determined after establishing equilibrium on a suction table  

(h =- 10 and -20 cm) (TOPP; ZEBCHUK, 1979) and in a pressure plate extractor  

(h =-60, -100, -330, -1000, -3000, and, -15000 cm) (DANE; HOPMANS, 2002). The 

Mualem-van Genuchten equations were fitted to the measured water contents determining 

fitting parameters θr, θs, α and n. 

Inverse modelling (IM) 

Hydraulic parameters were estimated by inverse modelling using the hydrological 

model HYDRUS 1-D (ŠIMŮNEK et al., 1998). HYDRUS 1-D employs a Galerkin type linear 

finite element scheme to numerically solve the Richards equation. Additionally, the model has 

an inverse solution option to estimate soil hydraulic parameters performed by a 

Marquardt-Levenberg parameter optimization algorithm, which requires initial soil and 

boundary conditions. 

The IM was performed using water content data from field measurement (θf) at 9 sites 

(Figure 2.1) in each horizon at depths 0.10 and 0.30 m. Water content was monitored every 

15 minutes between July, 9 and December, 31 2016 (176 days) (Figure 2.3), by Frequency 

Domain Reflectometry (FDR) sensors (EC-5, Decagon Devices Inc.) with an accuracy 

of ± 0.03 cm3 cm- 3 and a resolution of 0.001 cm3 cm-3. The calibration equation provided by 

the manufacturer performs well in mineral soils and was used in this study (VAZ et al., 2013). 
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Figure 2.3 Mean daily water contents for A and Bt horizons from all sites of the experiment (θf) 

(n = 9) using FDR sensors (line), and daily rainfall. The colored area represents the 

minimum and maximum water contents 

 

 

Data from July 9 to October 8 (a period of 92 days) were used to calibrate the hydraulic 

parameters. The second part of the experiment, from October 9 to December 31  

(84 days), was used to validate the modelling results comparing simulated water contents (θsim) 

to observed ones. The calibration period coincided with the dry season (March to October), 

characterized by a few rainfall events. The validation period is part of the wet season (October 

to March). 

For modelling purposes, the vertical soil profile was discretized into 40 nodes 

(Figure 2.4) and boundary conditions were set in terms of (1) potential surface evaporation flux 

(cm d-1) estimated using the Penman-Monteith equation (ALLEN et al., 1998; RITCHIE, 1972); 

(2) measured daily rainfall data from the weather station (upper boundary) (Figure 2.2); and (3) 

free drainage (∂h/∂z = 1) (bottom boundary). The first water content measurement was used as 
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initial condition and different sets of Mualem-van Genuchten parameters were tested to start 

the IM procedure. 

In our study, 10 parameters were estimated for each location, i.e., θr, θs, n, α and Ks for 

both horizons. Parameter λ was assumed equal to 0.5 (MUALEM, 1976; 

VAN GENUCHTEN, 1980). 

 

Figure 2.4 One-dimensional soil profile discretization with 40 nodes used in HYDRUS 1-D, 

showing soil horizons (A: red and B: blue) and sensor positions (squares) 

 

2.2.3 Model performance evaluation 

To evaluate the HYDRUS 1 D model performance, statistical indicators were calculated 

to compare observed and simulated water contents at each site: the coefficient of determination 

(r2-eq. 2.4), Root Mean Square Error (RMSE-eq. 2.5), and the Nash-Sutcliffe efficiency 

coefficient (NSE-eq. 2.6) were used. 
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where wi = 1/variance of measurement error of θi, θi and 𝜃𝑖are observed and estimated water 

contents at time i, respectively, n is the number of observations, and m is the number 

of optimized parameters. The statistical model evaluation ratings for r2 and NSE are presented 

in Table 2.2 (MORIASI et al., 2015). 

 

Table 2.2 Statistical model evaluation performance rating for coefficient of determination 

(r2-eq. 2.4), and Nash-Sutcliffe efficiency (NSE-eq 2.6) (MORIASI et al., 2015) 

Performance rating r2
 NSE 

Very good > 0.85 > 0.80 

Good 0.85- 0.75 0.80 - 0.70 

Satisfactory 0.75 – 0.60 0.7 - 0.50 

 

2.3 Results and Discussion 

2.3.1 Soil hydraulic parametrization 

Laboratory method 

Mualem-van Genuchten model fitted well to measured data (r2 ≥ 0.95). The 

corresponding hydraulic parameters and statistical indicators are presented in Table 2.3, 

measured and fitted SWRC for A and Bt horizons are shown in Figure 2.5. 

In our experiment, the root system of Brachiaria sp. grown in the area before 

the experiment associated with land use may have played a role on the soil structure and 

hydraulic properties near saturation, contributing for higher soil total porosity (BEVEN; 

GERMANN, 2013). In contrast, this influence is not so pronounced in the subsurface, 

promoting less variability in the wet range of the Bt horizon (Figure 2.5). 
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Table 2.3 Mualem-van Genuchten fitting parameters and their descriptive statistics for A and Bt 

horizons for the laboratory method (LM) and inverse modelling (IM) (standard 

deviation between brackets) 

Descriptive 

statistics 

LM  IM 

θr θs α n  θr θs α n Ks 

cm3 cm-3 cm-1 (-)  cm3 cm-3 cm-1 (-) cm d-1 

 A Horizon 

Mean 
0.21 

(0.03) 

0.53 

(0.03) 

0.117 

(0.041) 

1.26 

(0.06) 

 0.06 

(0.04) 

0.42 

(0.04) 

0.084 

(0.061) 

1.67 

(0.11) 

10.40 

(9.81) 

Median 0.22 0.55 0.094 1.25  0.05 0.41 0.090 1.67 9.62 

Min 

Max 

0.15 

0.25 

0.48 

0.56 

0.069 

0.179 

1.15 

1.34 

 0.00 

0.11 

0.37 

0.48 

0.020 

0.190 

1.49 

1.87 

1.91 

33.25 

 Bt Horizon 

Mean 
0.14 

(0.06) 

0.44 

(0.03) 

0.180 

(0.159) 

1.15 

(0.05) 

 0.18 

(0.06) 

0.42 

(0.03) 

0.015 

(0.010) 

1.26 

(0.06) 

14.94 

(14.24) 

Median 0.15 0.43 0.157 1.14  0.19 0.42 0.018 1.26 10.40 

Min 

Max 

0.04 

0.20 

0.39 

0.51 

0.026 

0.568 

1.09 

1.26 

 0.08 

0.25 

0.37 

0.47 

0.003 

0.033 

1.17 

1.37 

4.16 

49.48 

 

Figure 2.5 Soil water retention curves obtained by the laboratory method (LM) (points with 

standard deviation) and fitted by Mualem-van Genuchten model for A and Bt horizons 

for each site of the experiment (n = 9). Bold lines represents the mean curve for each 

horizon (n = 9), thin lines represent the mean of four replicates per site (n = 4) 

 

For both horizons, parameter α presented large standard deviation. This parameter 

represents a scaling factor of the matric potential and its determination is essential for soil water 

retention characterization. In the Bt horizon, the standard deviation of α was the  

highest (Table 2.3), being of the same order of magnitude as the parameter itself 

(0.159 and 0.180 cm- 1, respectively), indicating a doubtful determination of this parameter. 

Parameter θr and θs presented a standard deviation of around 0.03 cm3 cm-3, but twice 

as high for θr in the Bt horizon (Table 2.3). Measurements in pressure chambers at high pressure 

may be doubtful due to non-equilibrium, leading to overestimating of corresponding water 
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contents. This may be caused by the loss of hydraulic contact between the ceramic pressure 

plate and the soil sample, or by hydraulic discontinuities within the soil sample, making the 

water release very slow. At the same time, the pressure in the chamber is maintained with 

compressed (hence: water saturated) air, possibly retarding a final equilibrium. Several studies 

demonstrated discrepancy in water contents comparing pressure plate extractor and vapor 

equilibrium methods when high suctions were applied. In those studies, higher water contents 

from pressure plate extractor determinations have been reported (CRESSWELL; GREEN; 

MCKENZIE, 2008; BITTELLI; FLURY, 2009; SCHELLE et al., 2013). 

Therefore, the determination of θr is merely a numerical extrapolation, which does not 

necessarily describe the retention properties beyond 15000 cm of suction. When obtained from 

extrapolation, θr is a fitting parameter without clear physical meaning and positive and negative 

values can be obtained from unbiased SWRCs, even with very good fitting. To solve that 

problem, modified van Genuchten functions have been proposed to fit data in the dry part of the 

SWRC (ROSS; WILLIAMS; BRISTOW, 1991; GROENEVELT; GRANT, 2004). These 

equations inevitably require additional fitting parameters and present multiple inflection points. 

Inverse modelling 

Measured and simulated water contents are shown in Figure 2.6 as a function of time 

for A and Bt horizons. The A horizon showed lower water contents because contrarily to the 

subsoil, the topsoil is subject to the atmospheric evaporative demand. The temporal variation 

of water content is remarkable in the A horizon, with a quick response to rainfall events and 

rapidly losing water after a few days, whereas the increase of water content in the subsoil is 

delayed. 

The water content in the Bt horizon is relatively constant even in the dry periods 

(days 1 to 100) with a slight increase during the wet period (days 100 to 176). The variation 

of water content is lower in this horizon, with a minimum of 0.08 cm3 cm-3 and maximum 

of 0.12 cm3 cm-3; meanwhile, this is higher in the A horizon, with minimum of 0.16 cm3 cm-3 

and maximum of 0.33 cm3 cm-3. 
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Figure 2.6 Measured (dots) and simulated (lines) water contents performed with the Mualem-van Genuchten parameters for A and Bt horizons obtained 

using the laboratory method (LM) and inverse modelling (IM) over time for high and low NSE (Site #4 and Site #9, respectively) obtained by the 

inverse modelling 
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The HYDRUS 1-D calibration for both horizons was performed during the dry period 

(first 92 days of monitoring). The calibrated set of Mualem-van Genuchten parameters was then 

used to validate the model using data of the wet period (remaining 84 days). 

Mualem-van Genuchten estimated parameters along with standard error (95% confidence 

interval) are shown in Table 2.4. The model well described the water content over time with 

relatively high accuracy for Bt horizon, and somewhat lower accuracy for the A horizon (Figure 

2.6 and Figure 2.7). 

The hydraulic parameter estimation presented low precision (high standard errors) for 

n and Ks for both horizons, and for θr for the Bt horizon (Table 2.4). In contrast, values of 

θs and α were reliable. The θf data used in the calibration procedure may not have provided 

enough information for the model to estimate these parameters with high accuracy 

(STEENPASS et al., 2011), even in the A horizon which went through wetting and drying 

periods. 

For the Bt horizon, the narrow range of θf composed exclusively of high water content 

values contributed to an unreliable estimation of θr. The low variation of θf is also an important 

factor for inaccurate estimation of n for deeper horizons (GUBER et al., 2009) (Table 2.4). 

Measuring water contents over a wider range would improve their estimation, however, 

for the Bt horizon, low values for θf may never be reached in field conditions. 

Inverse modelling results can be improved by reducing the number of parameters to be 

estimated, and a common parameter to be fixed is θs. The value of θs to be used in this case is 

questionable. Total porosity calculated from bulk and particle density is an option, but 

sometimes field saturated water contents are 5 to 10% lower compared to laboratory 

measurements because of the entrapped air within the soil sample. 

Saturated hydraulic conductivity Ks presented the lowest precision among all estimated 

parameters (Table 2.4). Parameter λ (eq. 2.2) was fixed (λ = 0.5) with the aim to improve the 

estimation of Ks, but this apparently affected Ks estimation negatively. Apparently, field data 

did not contain enough information regarding hydraulic conductivity near saturation. As a 

solution, Ks could be determined independently (VAN DAM; STRICKER; DROOGERS, 1994) 

and the value of λ should then be estimated by inverse modelling. 
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Table 2.4 Estimated Mualem-van Genuchten parameters (eq. 2.1, eq. 2.2 and eq 2.3) and standard 

error for A and Bt horizons with model evaluation coeficients r2 and RMSE (95% 

confidence interval), and NSE for simulated water content (θsim) using hydraulic 

parameters provided by laboratory method (LM) and inverse modelling (IM) for all sites 

of the experiment 

Site Horizon 

θr θs α n Ks 
r2 

RMSE NSE NSE 

cm3 cm-3 cm-1 (-) cm d-1 cm3 cm-3 IM LM 

1 
A 0.08 ± 0.02 0.48 ± 0.03 0.191 ± 0.022 1.73 ± 0.19 11.76 ± 3.29 

0.96 0.01 
0.77 0.55 

Bt 0.17 ± 0.08 0.44 ± 0.02 0.004 ± 0.002 1.31 ± 0.15 13.14 ± 6.35 0.81 0.83 

3 
A 0.02 ± 0.13 0.40 ± 0.07 0.026 ± 0.015 1.49 ± 0.38 12.78 ± 5.95 

0.95 0.02 
0.85 0.51 

Bt 0.10 ± 0.36 0.44 ± 0.02 0.007 ± 0.005 1.23 ± 0.26 4.16 ± 3.59 0.78 0.89 

4 
A 0.09  ± 0.04 0.39  ± 0.03 0.086  ± 0.028 1.73  ± 0.30 1.91  ± 0.98 

0.89 0.02 
0.95 0.83 

Bt 0.23  ± 0.17 0.45  ± 0.07 0.019  ± 0.009 1.37  ± 0.62 30.00  ± 21.39 0.96 0.92 

5 
A 0.11 ± 0.02 0.45 ± 0.05 0.092 ± 0.038 1.87 ± 0.43 33.25 ± 14.39 

0.97 0.02 
0.87 

0.40 

Bt 0.20 ± 0.17 0.42 ± 0.01 0.015 ± 0.008 1.18 ± 0.13 5.71 ± 4.21 0.79 0.79 

6 
A 0.05 ± 0.03 0.44 ± 0.03 0.111 ± 0.031 1.63 ± 0.17 14.33 ± 2.64 

0.92 0.02 
0.96 0.79 

Bt 0.17 ± 0.16 0.40 ± 0.06 0.033 ± 0.047 1.30 ± 0.33 10.40 ± 35.90 0.96 0.95 

7 
A 0.10 ± 0.03 0.41 ± 0.02 0.164 ± 0.058 1.70 ± 0.22 4.54 ± 2.57 

0.93 0.02 
0.85 0.59 

Bt 0.25 ± 0.28 0.40 ± 0.01 0.023 ± 0.035 1.17 ± 0.29 7.33 ± 4.17 0.81 0.81 

8 
A 0.00 ± 0.12 0.37 ± 0.07 0.023 ± 0.015 1.58 ± 0.66 2.58 ± 4.62 

0.93 0.03 
0.98 0.61 

Bt 0.25 ± 0.44 0.40 ± 0.05 0.005 ± 0.023 1.28 ± 0.6 7.27 ± 24.28 0.99 0.68 

9 
A 0.05 ± 0.03 0.40 ± 0.04 0.041 ± 0.009 1.67 ± 0.23 9.62 ± 3.37 

0.96 0.01 
0.85 0.64 

Bt 0.09 ± 0.16 0.38 ± 0.02 0.011 ± 0.007 1.24 ± 0.01 12.90 ± 7.53 0.81 0.84 

10 
A 0.00 ± 0.05 0.45 ± 0.07 0.033 ± 0.011 1.60 ± 0.24 2.82 ± 3.26 

0.92 0.03 
0.99 0.87 

Bt 0.20 ± 0.40 0.47 ± 0.07 0.018 ± 0.022 1.26 ± 0.56 24.11 ± 32.11 1.00 0.99 

 

Other uncertainties for the inverse modelling include the prediction of soil evaporation, 

a complex nonlinear process involving water and vapor transport, energy, and mass transfer 

across an air boundary layer. Evaporation is still not well described by hydrological models and 

may affect model predictions (OR et al., 2013). Therefore, the evaporation rate determined by 

HYDRUS 1-D may not be representative of field conditions and could have impaired parameter 

optimization, especially for the soil surface where the interaction with atmosphere is most 

pronounced. 

The correlation amongst hydraulic parameter poses another challenge to IM. This issue 

can be more complex if the correlation between horizons is high. In our study, the correlation 

between parameters was more pronounced in the A horizon, and five sites presented high 
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correlation between horizons (Table 2.5). For both horizons, a high correlation between 

parameters n and θr may have contributed to the low accuracy of their estimation. The parameter 

correlation matrix may be useful for further studies as prior analysis to determine which 

parameter to estimate and the best observational dataset for the inverse modelling procedure 

(SCHARNAGL et al., 2011). This may reduce labor and time efforts and possibly avoid 

ill-posed problems. 

 

Figure 2.7 Measured and simulated water contents for Site #4 and Site #9 (high and low NSE, 

respectively, obtained from the inverse modelling) performed with the Mualem-van 

Genuchten parameters obtained using (a) inverse modelling (IM) and (b) the laboratory 

method (LM) for A and Bt horizons 
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Figure 2.8 Measured water content (θf) and estimated matric potential (hest) using 

Mualem-van Genuchten parameters obtained by IM during the calibration period for A 

and Bt horizons for Site #10 
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Table 2.5 Correlation coefficients between Mualem-van Genuchten parameters per horizon and between horizons. Red and blue colors represent the 

correlation between parameters for A and Bt horizons, respectively; black colors between Mualem-van Genuchten parameters from different 

horizons. Parameters without correlation are not shown. Correlations >0.6 are indicated by bold numbers. 

  A Bt A Bt A Bt 

   θr θs α n Ks θr θs θr θs α n Ks θr θs θr θs α n Ks θr θs 

A 

θs 0.67 1           0.34 1           0.52 1           

α -0.39 -0.66 1       -0.29 -0.84 1       -0.59 -0.40 1       

n 0.95 0.64 -0.36 1      0.87 0.66 -0.56 1      0.92 0.38 -0.60 1      

Ks 0.16 0.76 -0.52 0.02 1    -0.53 -0.51 0.65 -0.75 1    -0.44 0.34 0.38 -0.69 1    

Bt 

θs -0.10 -0.05 -0.05 -0.07 -0.04 0.52 1 -0.03 0.63 -0.63 0.26 -0.36 0.58 1 0.22 -0.12 -0.14 0.35 -0.39 0.90 1 

α -0.07 -0.18 0.04 -0.12 -0.09 -0.56 -0.55 -0.14 -0.09 0.18 0.03 -0.12 0.51 0.37 0.08 0.09 -0.52 0.11 -0.14 -0.47 -0.43 

n -0.04 0.09 -0.08 0.05 0.03 0.96 0.67 -0.05 0.42 -0.52 0.14 -0.26 0.96 0.70 0.26 -0.04 -0.16 0.36 -0.34 0.98 0.96 

Ks -0.03 -0.15 0.06 -0.12 -0.07 -0.57 0.06 -0.04 -0.14 0.19 -0.13 0.14 -0.40 -0.09 -0.37 -0.44 0.28 -0.28 -0.05 -0.54 -0.45 

A 

θs 0.74 1           0.85 1           0.60 1           

α -0.39 -0.59 1       -0.78 -0.73 1       -0.56 -0.24 1       

n 0.91 0.92 -0.56 1      0.91 0.93 -0.86 1      0.94 0.39 -0.62 1      

Ks -0.31 -0.20 0.59 -0.38 1    -0.37 -0.34 0.71 -0.61 1    -0.17 0.63 0.32 -0.45 1    

Bt 

θs -0.37 -0.09 0.00 -0.24 0.02 0.30 1 0.02 0.05 -0.35 0.07 -0.20 0.40 1 -0.25 -0.18 0.14 -0.23 0.05 0.77 1 

α -0.41 0.02 -0.04 -0.15 0.12 0.01 0.76 -0.07 0.08 -0.36 0.17 -0.43 0.41 0.54 0.10 -0.03 -0.23 0.18 -0.16 0.01 -0.01 

n 0.21 0.09 -0.37 0.24 -0.60 0.92 0.09 0.11 0.17 -0.35 0.16 -0.18 0.93 0.54 -0.15 -0.09 0.07 -0.13 0.04 0.98 0.87 

Ks -0.41 -0.13 0.23 -0.33 0.35 -0.18 0.81 0.24 0.16 -0.22 0.19 -0.07 -0.42 0.00 -0.34 -0.31 0.28 -0.29 -0.04 -0.53 -0.37 

A 

θs 0.77 1           0.36 1           0.51 1           

α -0.63 -0.71 1       -0.84 -0.18 1       0.03 0.45 1       

n 0.93 0.84 -0.73 1      0.95 0.24 -0.84 1      0.83 0.23 -0.25 1      

Ks 0.21 0.50 0.04 0.06 1    -0.57 0.47 0.70 -0.70 1    0.19 0.88 0.67 -0.20 1    

Bt 

θs -0.42 -0.57 0.12 -0.46 -0.50 0.81 1 0.48 0.03 -0.59 0.63 -0.57 0.56 1 -0.18 -0.45 -0.41 -0.05 -0.48 0.85 1 

α -0.42 -0.64 0.19 -0.40 -0.62 0.52 0.77 0.58 -0.05 -0.64 0.76 -0.68 0.80 0.82 -0.11 -0.69 -0.62 0.30 -0.82 0.24 0.53 

n -0.32 -0.35 0.01 -0.37 -0.24 0.98 0.85 0.28 0.34 -0.29 0.43 -0.12 0.94 0.70 -0.18 -0.20 -0.13 -0.18 -0.17 0.99 0.89 

Ks -0.14 -0.47 0.20 -0.16 -0.61 0.15 0.48 0.63 -0.37 -0.82 0.66 -0.92 0.14 0.48 0.12 -0.61 -0.61 0.37 -0.76 -0.26 0.08 
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2.3.2 Model performance 

The water content over time was simulated using the Mualem-van Genuchten 

parameters obtained from LM and IM. For LM simulations, Ks obtained from IM was used, and 

for both methods, λ = 0.5 was applied. θsim were remarkably different for the two methods. The 

hydraulic parameters obtained from IM described θsim well, while hydraulic parameters 

obtained from LM presented low performance (Table 2.4 and Figure 2.6). 

The simulation of water content using hydraulic parameters obtained from 

LM overestimated θsim in the A horizon for all sites during the simulated period (Figure 2.7). 

In the Bt horizon, θsim values were closer to θf, however in some sites θsim was misestimated 

during some part of the simulated period. Despite this difference, θsim was simulated with higher 

accuracy in the Bt horizon, with NSE-values ≥ 0.78. Meanwhile, the A horizon showed lower 

NSE values (Table 2.4). In the Bt horizon, θsim prediction by LM was similar to IM for most of 

the sites. 

The SWRCs derived from both methods are clearly different for the A horizon, while 

for the Bt horizon they presented similar shape (Figure 2.9). The Mualem-van Genuchten 

parameters were similar for the Bt horizon with exception of parameter α which related to a flat 

shape in the wet range at suctions higher than 100 cm (Figure 2.9 and Figure 2.10). In the 

A horizon the SWRCs are clearly different, especially in the dry part. Higher θr, associated with 

lower n values resulted in a flatter shape of the SWRCs for LM. The θs values from LM were 

also higher as discussed previously. 

The deviations in the SWRC obtained by both methods for the A horizon are due to the 

fact that θf showed lower values than found in the LM. The range of determination of the 

hydraulic parameters was different for both methods; in the LM, the driest values refer 

to 15000 cm suction, whereas for the IM water contents reached air dry values 

(about 106 cm of suction). The lowest θ-value found in the LM was 0.27 cm3 cm-3 obtained 

at 15000 cm of suction in the pressure plate extractor, whereas field values became as low 

as 0.08 cm3 cm-3 (Figure 2.11). Furthermore, more than half of the measured θf-values 

corresponded to pressure heads more negative than h = -15000 cm, which contributed to the 

differences in hydraulic parameter estimation, as shown in Figure 2.9. In the Bt horizon, the 

water content ranges were similar for both methods and no θf values below h = -15000 cm 

(0.27 cm3 cm-3) were measured; resulting SWRCs were similar (Figure 2.9 and Figure 2.10). 
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Figure 2.9 Soil water retention curves derived from laboratory method (LM) and inverse modelling 

(IM) fitted by Mualem-van Genuchten model for A and Bt horizons for each site of the 

experiment (n = 9). Bold lines represents the mean curve for each horizon (n = 9), thin 

lines represent the mean of four replicates per site (n = 4) 
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Figure 2.10 Mean Mualem-van Genuchten parameters obtained from laboratory method (LM) and 

inverse modelling (IM) for A and Bt horizons for all sites of the experiment (n = 9). 

Each Mualem-van Genuchten parameter of LM represents the mean of four replicates 

(n = 4) 
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Figure 2.11 Empirical cumulative distribution function of water contents from field measurement 

(θf) for A and Bt horizons for all sites of the experiment (n = 9). The dashed line 

represents water content (θ) at 15000 cm of suction for A and Bt horizons (lines are 

overlapped) 

 

 

This poses the question of the LM, with pressure heads limited to the most negative 

value of 15000 cm, is adequate for simulation of drier conditions which may occur mainly near 

a soil surface due to evaporation. Besides this experimental issue, for these very low values 

of soil water content corresponding to very negative pressure heads, hydraulic functions based 

on the capillarity (BROOKS; COREY, 1964; VAN GENUCHTEN, 1980; KOSUGI, 1996; 

1999), may not adequately describe very dry conditions where adsorption processes dominate 

retention properties (MADI et al., 2018). 

For this very dry range of the SWRC, some authors proposed retention functions based 

on adsorption processes (GROENEVELT; GRANT, 2004; LEBEAU; KONRAD, 2010; MADI 

et al., 2018), however, these functions are not implemented in most hydrological models. This 

is especially relevant in clay soils, where a substantial amount of water is released at matric 

potentials below h = -15000 cm. 

2.3.3 Actual surface (qsur) and bottom (qb) flux simulation 

Mean simulated actual surface (qsur) and bottom flux (qbot) (cm d-1) are shown in Figure 

2.12 using both LM and IM soil hydraulic parameters. Difference between the two methods is 

found mostly during the (wetter) validation period, especially for bottom flux. The qsur 

simulation during the calibration period is similar for both methods. During the validation 
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period, parameters obtained from LM generated more intense inflow and outflow than IM. 

Hydraulic parameters from LM simulated qbot near zero and did not predict much flux during 

the calibration period. The first rainfall events only wetted the soil profile for LM, whereas the 

simulation using parameters from IM generated outflow from the bottom of soil profile. During 

the validation period, parameters from LM generated more intense inflow and outflow than IM. 

The qbot simulation shows that the set of hydraulic parameters derived from LM underestimated 

water flux during the dry period and provide more intense flux during the wet period. The set 

of hydraulic parameters chosen from each method affected surface and bottom flux simulation 

and, therefore, further water balance calculation. 

 

Figure 2.12 Mean actual surface (qsur) (a) and bottom (qbot) (b) flux from all sites of the 

experiment (n = 9) simulated by HYDRUS 1-D using Mualem-van Genuchten 

parameters obtained from laboratory method (LM) and inverse modeling (IM), and 

daily rainfall 
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2.4 Conclusions 

Inverse modelling was performed with water content data from field measurement using 

FDR sensors. The Mualem-van Genuchten parameters were optimized using HYDRUS 1-D 

hydrological model for two horizons, resulting in good statistical indicators (r2 ≥ 0.89 and 

RMSE ≤ 0.03 cm3 cm-3), but low accuracy for n and Ks estimation. For the Bt horizon, estimated 

θr was not reliable. 

We suggest two different approaches to improve the parameter optimization. First, less 

parameters should be estimated at the same location. This decreases the degree of freedom and 

provides a narrower confidence interval of the estimated parameters. θs could be fixed and Ks 

could be measured independently, instead, λ could be included in the estimation. Second, water 

content monitoring in a wider range would add information and improve estimation precision. 

Additional information such as measured matric potential or soil evaporation may improve 

parameter estimation. 

Hydraulic modelling based on Richards equation using inverse modelling led to more 

reliable results than laboratory methods. Water content determined from laboratory methods 

may contain errors derived from non-equilibrium within soil sample at high suctions. 

Moreover, these methods do not include very dry conditions because water content 

determination is generally limited to 15000 cm of suction. These limitations is especially 

important for the topsoil layer subjected to atmospheric evaporative demand that may reach air-

dry values. These factors may cause discrepancy between water content determination from 

laboratory method and field conditions. 
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3 HYDRAULIC PROPERTIES SAMPLING STRATEGIES AFFECT THE 

UNCERTAINTY OF VADOSE ZONE HYDROLOGICAL MODEL 

PREDICTIONS 

Abstract 

Uncertainty assessment of agro-hydrological model predictions provides information about the 

reliability of the model results which support water resources management and risk assessment. 

Among the different sources of uncertainty, the uncertainty related to soil hydraulic properties 

has a strong influence on the agro-hydrological model predictions. In this paper, we analyze the 

influence of the Mualem-van Genuchten parameters (M-VG) uncertainty on water balance 

components and crop yield predicted by the agro-hydrological SWAP for a soil under rainfed 

maize crop by uncertainty analysis using two Monte Carlo sampling methods. One method used 

Monte Carlo Random Sampling from normal distribution based on standard errors of the 

hydraulic parameters obtained from inverse modelling (MCRS), and the other used the Latin 

Hypercube Sampling (MCLHS). A deterministic simulation of SWAP using the mean of the 

M-VG parameters obtained from the inverse modelling was performed for comparison 

purposes. The validity of modelling results was assessed using simulated and water contents 

measured in the field. Our results showed that MCLHS and MCLHS generated distinct ranges 

and probability density distributions shape for the M-VG parameters and simulated results. The 

n-parameter was especially distinct for both horizons, and runoff (Roff), soil evaporation (Esoil) 

and bottom flux (qbot) showed remarkable differences between sampling methods. The M-VG 

parameters from MCRS may enhanced the uncertainty of simulated results, whereas MCLHS 

provided more reliable M-VG parameters combinations. The uncertainty analysis may provide 

useful information about the uncertainties of SWAP model predictions and should be preferred 

over a mere deterministic approach, which often provided results diverging those obtained from 

probabilistic methods. Moreover, the uncertainty analysis is a key tool for more reliable 

interpretation of the water balance and crop yield in agro hydrological systems and should be 

considered in agro modelling studies. 

 

Keywords: Uncertainty analysis. Agro hydrological modelling. Latin Hypercube Sampling. 

SWAP model. 

3.1 Introduction 

Agro hydrological models based on the Richards equation have been widely used to 

predict and simulate soil water balance components, solute transport, and crop yield under 

various conditions. These models provide detailed water and energy balances in the 

soil-water-atmosphere system with reliable results (VAN DAM et al., 2008). However, 

although many of these models contain detailed process-based descriptions of involved 

processes, they are a simplification of the natural system they are simulating, and include 

assumptions and generalizations in their structure and parameterization. Model predictions 

should therefore be interpreted taking into account the uncertainty of input parameters, of model 
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structure and/or of the applied numerical solution (WAGENER; GUPTA, 2005; VRUGT et al., 

2008). 

The assessment of agro-hydrological model prediction uncertainties is essential for 

water resources management for which decisions are commonly supported by model results. 

Uncertainty analysis provides information about the reliability of model predictions and may 

allow improvements toward uncertainty reduction. However, the assessment of the overall 

uncertainty is complex due to the inter dependence between different sources of error. The input 

parameters related to soil hydraulic properties have shown strong influence on 

agro-hydrological model predictions (VEREECKEN et al., 1992), and are considered more 

relevant than model structure or numerical solution uncertainties (WORKMANN; SKAGGS, 

1994, JOHRAR et al., 2004; BARONI et al., 2010). 

Despite its importance, uncertainty analysis of agro-hydrological modelling predictions 

is underrepresented in literature and only a few studies have focused on the issue. To mention 

some reported studies, simulated actual evapotranspiration in an irrigated agricultural field in a 

dry region showed accurate and reliable prediction whereas deep percolation prediction was not 

accurate (SHAFIEI et al., 2014); rainfall spatial and temporal variation affected deep drainage 

predictions more than hydraulic properties in a catchment located in Australia (BENNETT 

et al., 2013); maize and wheat yield were sensitive to the parameters related to nutrient transport 

in a maize–wheat rotation cropping experiment (SUN et al., 2016); and, model structure 

uncertainty was assessed by simulating water balance components with different 

agro-hydrological models (BARONI et al., 2010; HASSANLI et al., 2016). 

In addition to this implicit model uncertainty, agro-hydrological modelling becomes 

especially cumbersome if soil spatial variability is taken into account. Soil hydraulic properties 

are characterized by a strong variability in both vertical and horizontal directions even within a 

small field with a relatively homogeneous soil type (MITTELBACH; SENEVIRATNE, 2012; 

VEREECKEN et al., 2016). Consequently, spatial variability of hydraulic properties should 

also be considered as a source of uncertainty (WALKER et al., 2003). Among 

agro-hydrological model applications, only a few investigated both the effect of hydraulic 

parameter uncertainties and spatial distribution of hydraulic properties at field scale 

(MAKOWSKI; WALLACH; TREMBLAY, 2002; HUPET; BOGAERT; VANCLOOSTER, 

2004; LAWLESS; SEMENOV; JAMIESON, 2008; BARONI et al.,  

2010, BENNETT et al., 2013). 

  



56 
 

There are no well-defined guidelines to implement uncertainty analysis in a systematic 

and integrated manner to agro hydrological modelling (LIU; GUPTA, 2007). Many approaches 

based on the Generalized Likelihood Uncertainty Estimation method (GLUE; BEVEN; 

BINLEY, 1992) and the Monte Carlo Markov Chain method  

(MCMC; KUCZERA; PARENT, 1998) have been proposed to assess uncertainty in 

hydrological and agro-hydrological modelling over the last decades. The GLUE and MCMC 

have been used for both model calibration and uncertainties assessment as they are available 

and adaptable to nonlinear systems. The GLUE framework has been questioned in the recent 

literature for not being a formal Bayesian inference. The parameter and predictive distribution 

based on GLUE relies on subjective decisions about likelihood functions without a statistical 

consistency error model, which may provide questionable uncertainty boundaries with 

statistical incoherence (MONTOVANI; TODINI, 2006; BLASONE et al., 2008; STEDINGER 

et al., 2008; LI et al., 2010). The GLUE has been applied to solve problems of parameter 

equifinality rather than to assess model prediction uncertainties (VRUGT et al., 2008; VRUGT; 

TER BRAAK, 2011) whereas the MCMC method can be computationally demanding, 

especially when correlation among probability density functions occur, which increases the 

complexity and dimensionality of the sampling (LU et al., 2014). 

The Latin Hypercube Sampling (LHS) is a random sampling method for Monte 

Carlo-based uncertainty quantification which has been widely used duo to the effectiveness in 

generate samples preserving the probabilistic features of the variable. The advantage of this 

method is to cover the entire range of the variable by intervals with equal probability of 

occurrence with relatively small sample size (MCBAY; BECKMAN; CONOVER, 1979). The 

LHS is computationally cheap compared to others Monte Carlo sampling methods and can cope 

with many input variables (SALLABERRY; HELTON; HORA, 2007). The correlation of input 

variables can be incorporated in the LHS sampling scheme preserving the exact form of the 

marginal distributions on the input variables (IMAN; CONOVER, 1982). 

In this study, we aimed to investigate the effect of soil the Mualem-van Genuchten 

parameters uncertainties on agro-hydrological model predictions. Using a stochastic simulation, 

we propose a procedure based on input parameter probability density distributions to investigate 

the implications of two Monte Carlo sampling methods on the model predictions. The 

discussion focused on simulations of crop yield and water balance components of a maize crop 

growing in a homogenous soil type under specific meteorological boundary conditions. 
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3.2 Material and Methods 

3.2.1 Soil hydraulic properties 

Soil hydraulic properties used in this study were obtained from a Ferralic Nitisol 

according to the FAO soil classification (IUSS WORKING GROUP WRB, 2015) located in 

Piracicaba/Brazil (X230592, Y7486483 UTM). The soil hydraulic properties from the A and 

Bt horizons (0.00 – 0.20 m and 0.20 – 0.40+ m, respectively) were described using the 

van Genuchten (1980) functions with the Mualem restriction (MUALEM, 1976): 
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where  is the effective saturation; θr and s are residual water content and saturated water 

content (cm3 cm-3), respectively; h is matric potential (cm); α (cm-1), n (-), and  (-) are fitting 

parameters; Ks is saturated hydraulic conductivity (cm d- 1). 

The Mualem-van Genuchten parameters (M-VG) θr, s, n, α and Ks were estimated by the 

inverse modelling option of the hydrological model HYDRUS 1-D (ŠIMŮNEK et al., 1998) 

employing measured water content (θf) data (Table 3.1). The water contents were obtained by 

Frequency Domain Reflectometry (FDR) sensors installed at 9 locations within an area of 10 x 

25 m (Figure 3.1) at 0.10 and 0.30 m depths. Monitoring occurred between July and December 

of 2016. Data from one of the sites (Site #2) were not considered in the analysis of this study, 

as it appeared to refer to a compacted spot with diverging hydraulic properties. 

Water content data measured between July and October were used to calibrate the 

M-VG parameters; the remaining period (November and December) was used to validate the 

results. The validation consisted in comparing simulated water contents to observed ones. The 

inverse modelling was evaluated using the coefficient of determination (r2) and Root Mean 

Square Error (RMSE) statistical indicators (Table 3.1). The tortuosity and connectivity 

parameter  was not calibrated but assumed to be equal to 0.5 (MUALEM, 1976). Additional 

information about soil characteristics and the inverse modelling procedure can be found in 

chapter 2. 
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Figure 3.1 Schematic representation of the area with the 9 locations of FDR sensors for water 

content monitoring. Site number 2 (in gray) was not used in this study 

 

 

Table 3.1 Mualem-van Genuchten parameters (eq. 3.1 and eq. 3.2) and respective standard errors 

for A and Bt horizons obtained from inverse modelling associated with model 

evaluation coeficients r2 and RMSE (95% confidence interval) for all sites of the area 

(n = 9) 

Site Horizon 
θr θs α n Ks 

r2 
RMSE 

cm3 cm-3 cm-1 (-) cm d-1 cm3 cm-3 

1 
A 0.08 ± 0.02 0.48 ± 0.03 0.191 ± 0.022 1.73 ± 0.19 11.76 ± 3.29 

0.96 0.01 Bt 0.17 ± 0.08 0.44 ± 0.02 0.004 ± 0.002 1.31 ± 0.15 13.14 ± 6.35 

3 
A 0.02 ± 0.13 0.40 ± 0.07 0.026 ± 0.015 1.49 ± 0.38 12.78 ± 5.95 

0.95 0.02 Bt 0.10 ± 0.36 0.44 ± 0.02 0.007 ± 0.005 1.23 ± 0.26 4.16 ± 3.59 

4 
A 0.09  ± 0.04 0.39  ± 0.03 0.086  ± 0.028 1.73  ± 0.30 1.91  ± 0.98 

0.89 0.02 Bt 0.23  ± 0.17 0.45  ± 0.07 0.019  ± 0.009 1.37  ± 0.62 30.00  ± 21.39 

5 
A 0.11 ± 0.02 0.45 ± 0.05 0.092 ± 0.038 1.87 ± 0.43 33.25 ± 14.39 

0.97 0.02 Bt 0.20 ± 0.17 0.42 ± 0.01 0.015 ± 0.008 1.18 ± 0.13 5.71 ± 4.21 

6 
A 0.05 ± 0.03 0.44 ± 0.03 0.111 ± 0.031 1.63 ± 0.17 14.33 ± 2.64 

0.92 0.02 Bt 0.17 ± 0.16 0.40 ± 0.06 0.033 ± 0.047 1.30 ± 0.33 10.40 ± 35.90 

7 
A 0.10 ± 0.03 0.41 ± 0.02 0.164 ± 0.058 1.70 ± 0.22 4.54 ± 2.57 

0.93 0.02 Bt 0.25 ± 0.28 0.40 ± 0.01 0.023 ± 0.035 1.17 ± 0.29 7.33 ± 4.17 

8 
A 0.00 ± 0.12 0.37 ± 0.07 0.023 ± 0.015 1.58 ± 0.66 2.58 ± 4.62 

0.93 0.03 Bt 0.25 ± 0.44 0.40 ± 0.05 0.005 ± 0.023 1.28 ± 0.6 7.27 ± 24.28 

9 
A 0.05 ± 0.03 0.40 ± 0.04 0.041 ± 0.009 1.67 ± 0.23 9.62 ± 3.37 

0.96 0.01 Bt 0.09 ± 0.16 0.38 ± 0.02 0.011 ± 0.007 1.24 ± 0.01 12.90 ± 7.53 

10 
A 0.00 ± 0.05 0.45 ± 0.07 0.033 ± 0.011 1.60 ± 0.24 2.82 ± 3.26 

0.92 0.03 
Bt 0.20 ± 0.40 0.47 ± 0.07 0.018 ± 0.022 1.26 ± 0.56 24.11 ± 32.11 
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3.2.2 Hydrological modelling 

The SWAP model (KROES et al., 2008) was used for hydrological modelling. 

SWAP is a 1-D model based on an implicit numerical solution of the Richards equation 

allowing to simulate water, solute and heat transport in the vadose zone in interaction with crop 

growth. Root water uptake is accounted for by a sink term S (cm3 cm-3 d-1), which is added to 

the Richards equation which reads: 
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where θ is the volumetric water content (cm3 cm-3); t is time (d); z vertical coordinate 

(positive upward) (cm); K is unsaturated soil hydraulic conductivity (cm d-1); h is soil pressure 

head (cm). 

The SWAP model numerically solves eq. (3.3) using the θ-h-K relations described by 

Mualem-van Genuchten functions (eqs. 3.1 and 3.2). The top boundary condition is defined by 

the actual evaporation, irrigation and rainfall. Daily potential evapotranspiration is determined 

by Penman-Monteith equation (MONTEITH, 1965, MONTEITH, 1981) using meteorological 

data of air temperature, solar radiation, wind speed, and vapor pressure. 

The actual plant transpiration rate (Ta) (cm d-1) (eq. 3.4) is computed by integration of S 

over the root zone considering both oxygen and drought stresses according to the Feddes, 

Kowalik and Zaradny (1978) reduction function 
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where the lower integration limit Rd is the rooting depth (cm). The actual evaporation is 

calculated by Darcy´s equation and the bottom-boundary condition was free drainage. 
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3.2.3 Simulation scenario 

The simulations were performed using the detailed crop growth module WOFOST 

(DE WIT et al., 2019) available in the SWAP model, simulating details about crop 

photosynthesis and crop development. The water balance components and crop yield were 

simulated for a 30 years period (1987 – 2017) for a maize crop growing every year from October 

15 until March 15 under rainfed conditions. Meteorological data used in the simulations were 

obtained from the University of São Paulo weather station in Piracicaba, less than 1 km from 

the experimental area (22°42' 10'' S; 47° 37' 25'' W, altitude 546 m) (Figure 3.2). Table 3.2 

contains the specifications of the scenario used to perform the simulations by SWAP model. 

 

Figure 3.2 Main annual rainfall, daily solar radiation and air temperature as observed at the University 

of São Paulo weather station in Piracicaba/Brazil during the period 1987 – 2017 
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Table 3.2 Scenario spefications used to perfom the SWAP simulations for maize 

Section Description Specification 

Plant 

Light extinction coefficient for diffuse visible light (Kdif) 0.65 

Light extinction coefficient for direct visible light (Kdir) 0.75 

Leaf area index at the beginning of simulation (LAI0) 0.04 (m2 m-2) 

Critical pressure heads for root extraction (Feddes; Kowalik; 

Zaradny (1978) 

h1 = -10 (cm)  

h2 = -20 (cm)  

h3H = -300(cm) 

h3L = -600 (cm) 

h4 = -3000 (cm) 

Interception coefficient of Von Hoyningen-Hune and Braden (aH) 0.025 (m) 

Initial rooting depth (Rdi) 0.05 (m) 

Maximum daily increase in rooting depth (Rri) 0.022 (m) 

Maximum rooting depth crop (Rdc) 0.75 (m) 

Soil  

Initial water content (i) 
Pressure head as function of depth 

h = -100 (cm) 

Vertical discretization 40 compartments of 0.01 m 

Soil hydraulic parameters 
Calibrated θs, θr, α, n, Ks (Table 3.1) 

Fixed λ = 0.5 

Bottom boundary Free drainage 

 

3.2.4 Uncertainty analysis 

Two Monte Carlo sampling methods were used analyze the influence of the 

Mualem-van Genuchten parameter uncertainty on the SWAP model predictions: actual crop 

yield (Y, kg ha-1), accumulated season runoff (Roff, mm), accumulated season soil evaporation 

(Esoil, mm), and accumulated season plant transpiration (T, mm). Multiple realizations of SWAP 

were performed using M-VG parameters obtained from random sampling and Latin Hypercube 

Sampling (LHS). Besides these methods, a deterministic simulation of the SWAP model using 

the mean of the M-VG parameters obtained from inverse modelling (Table 3.3) was performed 

for comparison purposes. 

The first Monte Carlo sampling method aimed to analyze the influence of the M-VG 

parameters standard errors obtained from the inverse modelling on the SWAP predictions. 

Random samples of each M-VG parameter were drawn from normal distribution and respective 

standard errors (Table 3.1), supposing independence between the parameters. This method will 

be referred as MCRS. 
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To avoid excessive simulations and optimize processing time, the samples size, N, of 

each M-VG parameter was determined by a variance analysis. The sample size was considered 

adequate when the parameter variance became less than 10-3, corresponding to N = 500. 

Therefore, 500 random values were generated using the mean and respective standard error of 

each hydraulic parameter. Some M-VG parameter combinations are less likely to occur in 

reality, and the model may fail to converge, especially for values that are at the tails of the 

normal distribution. To avoid this, the upper and lower 5% of the distribution tails were 

excluded. Due to the relatively high standard errors, negative values of  and Ks, as well as 

n-values ≤ 1 were sometimes generated but considered as non-feasible values and eliminated. 

For this sampling method, 270 M-VG parameter sets per site were eliminated and the remaining 

230 (9 x 230 = 2070 in total) were used to perform simulations with the SWAP model. 

The second sampling method used the Monte Carlo Latin Hypercube Sampling and will 

be referred as MCLHS. The MCLHS is a type of stratified Monte Carlo sampling (MCKAY; 

BECKMAN; CONOVER, 1979), which provide non-collapsing and more space-filling results 

compared to simple random sampling techniques (FANG; MA; WINKER, 2000, HELTON; 

DAVIS; JOHNSON, 2015). The LHS is a generalization of the Latin Square sampling scheme 

whereby only one sample is taken from each row and column of a square grid where the input 

variables have all portions of its range represented during the sampling procedure. 

To generate a sample of size m from the n variables with the distributions D1, D2, ..., Dn, 

the range Xj of each variable xj is divided into m non-overlapping contiguous intervals 

Xij, i = 1, 2, …, m 

of equal probability (1/N) in consistency with the corresponding Dj distribution. One random 

value of the variable xj is selected from the interval Xij in consistency with the distribution Dj 

for i = 1, 2, …, m and j = 1, 2, …, n. After, the m values for x1 are randomly combined without 

replacement with the m values for x2 to produce the ordered pairs  

[xi1, xi2], i = 1, 2, …, m. 

Randomly, the previous pairs are combined without replacement with the m values for x3 

producing the ordered triples  

[xi1, xi2, xi3], i = 1, 2, …, m.  

The sampling process is complete for all n variables, resulting in a LHS of size m from n 

variables (x) 

xi = [xi1, xi2, xin], i = 1, 2, …, m (SALLABERRY; HELTON; HORA, 2007). 

The Pearson correlation between the M-VG parameters from each horizon and between 

horizons were included in the sample generation using the LHScorcorr function of the lhs R 
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package (R CORE TEAM, 2018). This function force the correlation matrix to a predictive 

value using the Huntington-Lyrintzis algorithm preserving the exact form of the marginal 

distributions on the input variables (IMAN; CONOVER, 1982). (HUNTINGTON; 

LYRINTZIS, 1998). For this method, 1000 values of each M-VG parameter were used to 

perform the simulations with SWAP  

3.2.5 Modelling validation 

Soil water content over time and depth is a primary output value of the SWAP model 

and can be used to interpret the validity of modelling results. Obtained values of water content 

predicted by the SWAP model using the M-VG parameters from the MCRS and MCLHS 

sampling methods were compared with the measured values (θf) obtained from the field 

experiment between October, 15 and December, 31 2016. 

3.3 Results and Discussion 

3.3.1 Hydraulic parameters uncertainty 

The probability density distributions of the Mualem-van Genuchten parameters obtained 

using the two sampling methods, MCRS and MCLHS, are shown in Figure 3.3. The probability 

density functions represented the uncertainty of each soil hydraulic parameter that was used as 

input data for the SWAP model. The statistical characteristics of the soil hydraulic parameter 

are shown in Table 3.3. 

The ranges of the hydraulic parameters distributions from MCRS were wider compared 

to MCLHS (Figure 3.3) duo to the fact that the relatively high standard errors used in MCRS 

resulted in wider ranges of sampled values. Meanwhile, the ranges from MCLHS were smaller 

since the LHS takes samples within the interval provided by the generated cumulative 

distribution (MCBAY; BECKMAN; CONOVER, 1979). The width differences were especially 

relevant for parameter r, s and n for both horizons. For MCRS, the n-values were distributed 

over the x-axis with low density for both horizons, whereas for MCLHS, the ranges were 

narrow with high density.  

Both MCRS and MCLHS provided similar distribution of α and Ks parameters. 

Although the ranges were distinct between the methods, the high densities regions were 

relatively similar with low density in the tails. The shapes of the probability density 
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distributions also were distinct for both horizons. MCLHS presented multiple modal 

distribution with multiple regions with high densities, whereas for MCRS the distributions were 

mostly unimodal, or multimodal with smoothed peaks (Figure 3.3).  

For MCRS, the presence of heavy tails in the probability density distributions provided 

a displaced mean from the high-density regions for n and Ks (Figure 3.4), whereas the presence 

of light tails for the r and s, promoted means closer to these regions. The presence of multi 

modes of multimodal distributions or the presence of heavy tails in unimodal distributions 

demonstrates the concern of using the mean as indicator of central tendency as representative 

of the stochastic distribution. Moreover, the mean is commonly used as the representative value 

of soil hydraulic properties (e.g, M-VG parameters) for a certain soil type, which may provide 

erroneous interpretation of soil transport phenomena. 

Figure 3.5 illustrates extreme scenarios of water retention curves using the minimum 

and maximum values of the M-VG parameters obtained from MCRS and MCLHS. These 

values were selected only for one M-VG parameters from a certain set whereas the others 

remained with their original values. The MCRS provided more heterogeneous WRC shapes 

compared to MCLHS, as expected as the ranges of the hydraulic parameters from this method 

were wider (Table 3.3). The minimum α and n-values obtained from MCRS generated flatter 

WRCs which impair the soil to desaturate whereas higher values of n generated steep WRCs 

allowing water release in the low suction range (OR; TULLER, 1999, WANG et al., 2017). 
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Figure 3.3 Probability density distributions of the Mualem-van Genuchten parameters obtained 

from Monte Carlo Random Sampling (MCRS) (n = 1256) and Monte Carlo Latin 

Hypercube Sampling (MCLHS) (n = 1000). Dashed lines refers to the mean values for 

MCRS and MCLHS. Mean lines of θs from Bt horizon are overlapped 
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Figure 3.4 Quantile–quantile plots depicting heavy tails from n and Ks probability distributions 

functions of the Bt horizon based on Monte Carlo Random Sampling (MCRS) 

 

 

Figure 3.5 Water retention curves using maximum and minimum values of the Mualem-van 

Genuchten parameters for Monte Carlo Random Sampling (MCRS) and Monte Carlo 

Latin Hypercube Sampling (MCLHS) for A and Bt horizons. Thick lines represents the 

curves using the mean values 
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Table 3.3 Statistical characteristics of the Mualem-van Genuchten parameters for Random 

Sampling (MCRS) (n = 1256) and Monte Carlo Latin Hypercube Sampling (MCLHS) 

(n = 1000) for A and Bt horizons 

Method Statistics Horizon 
r s  n Ks 

cm3 cm-3  cm-1 (-) cm d-1 

MCRS 

Mean 
A 0.08 0.43 0.102 1.71 12.46 

Bt 0.15 0.42 0.019 1.33 14.93 

Min 
A 0.00 0.28 0.004 1.00 0.11 

Bt 0.00 0.31 0.000 1.00 0.03 

Max 
A 0.23 0.54 0.256 2.58 56.83 

Bt 0.37 0.57 0.105 2.37 68.70 

SD 
A 0.04 0.05 0.062 0.24 10.19 

Bt 0.08 0.04 0.020 0.24 13.20 

MCLHS 

Mean 
A 0.05 0.42 0.076 1.65 8.66 

Bt 0.17 0.42 0.013 1.24 11.34 

Min 
A 0.00 0.37 0.023 1.49 1.95 

Bt 0.09 0.38 0.004 1.17 4.16 

Max 
A 0.11 0.48 0.191 1.87 33.16 

Bt 0.25 0.47 0.033 1.37 29.98 

SD 
A 0.04 0.03 0.052 0.10 7.09 

Bt 0.06 0.03 0.008 0.06 7.12 

3.3.2 Uncertainty of modelling results 

Simulated actual crop yield (Y), accumulated season runoff (Roff), accumulated season 

plant transpiration (T), accumulated season soil evaporation (Esoil), accumulated season bottom 

flux (qbot), and their statistics obtained from stochastic realizations performed with SWAP using 

MCRS and MCLHS sampling methods for 30 growing seasons are shown in Figure 3.6 and 

Table 3.4. Some combinations of hydraulic parameters, especially those in which the difference 

between s and r was small, caused numerical issues in the SWAP model. Therefore, a 

minimum of 0.15 was adopted for this difference, reducing the number of simulations of MCRS 

from 2070 to 1256. For MCLHS, this problem was not detected, i.e., differences between s 

and r were large enough in all cases. 

The mean values of simulated Y and T were similar for MCRS and MCLHS, however 

for MCRS low values of land productivity and plant transpiration were obtained duo the 

presence of heavy tails in their probability density distribution (Figure 3.6 and Table 3.4) The 

wide range of M-VG parameters obtained by MCRS (Table 3.3) generated unrealistic hydraulic 

parameter combinations for this soil type which simulated extremely low values of Y and T 

(minimum of 11.87 kg ha- 1 and 43.12 mm, respectively). On the other hand, the narrower range 

of M-VG parameters obtained from MCLHS generated narrower range and more realistic 

values of land productivity and plant transpiration. Although the mean values of Y were below 

the Brazilian mean land productivity (4.900 kg ha-1, CONAB, 2016),  
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the T values for both sampling methods were similar for those found by Pinheiro; De Jong van 

Lier; Šimůnek. (2019) for the similar climatic conditions and soil type. 

The mean values of Esoil were similar between the sampling methods, but again the 

presence of heavy tails in the probability density distribution obtained using MCRS generated 

high values of soil evaporation. This may promoted high water loss in the soil surface reducing 

crop available water and possibly causing drought stresses affecting land productivity. 

Considering the evaporation rate at the soil surface function of soil hydraulic properties, 

climatic conditions and land cover, and assuming only hydraulic properties changings in thus 

study, the hydraulic parameters related to K determination (eq. 3.2),  

e.g., n and Ks, may promoted Esoil differences between sampling methods. 

Soil hydraulic properties, especially hydraulic conductivity mostly affect runoff and 

bottom flux. The low values of KS in the A horizon (Table 3.1) promoted slow infiltration of 

water into the soil during intense rainfall events reducing available water to plants. While some 

high values of Ks from the Bt horizon associated with macropores present in the subsurface 

layer enhanced release of water in the bottom of the soil profile. Besides the influence of Ks, 

the adoption of the pore connectivity value (λ) of 0.5 from Mualem (1976) likely to negatively 

affected the K determination introducing more uncertainty in Roff, Esoil and qbot predictions 

(VEREECKEN et al., 2010, DE JONG VAN LIER; WENDROTH., 2016). The high 

uncertainty associated to the Ks obtained by the inverse modelling (Table 3.1) may enhanced 

the uncertainty of soil hydrological related-processes simulation, evidencing the importance of 

proper soil hydraulic properties determination, as well as the difficult of obtain soil hydraulic 

properties from transient water flow in field conditions by inverse modelling.  

The probability density distributions shape of Esoil were distinct for MCRS and MCLHS, 

whilst the shape of MCRS tended to be unimodal, the MCLHS presented multimodal 

distribution with three peaks with high probability of occurrence. The Roff and qbot showed 

bimodal probability density distributions for both sampling methods. Wherein one peak of the 

distribution matched for MCRS and MCLHS, the other was more pronounced for MCLHS. 

For this type of distribution, the mean are displaced from the high density regions. Although 

some distributions obtained by MCRS and MCLHS tented unimodal distribution, none of the 

SWAP predictions were normally distributed according to the Shapiro-Wilk test (95% 

confidence level). 
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The deterministic simulation of the SWAP model using the mean values of M-VG 

parameters (Table 3.1) is also shown in Figure 3.6. The simulated Y and T were close to the 

high density regions for both sampling methods, whereas for Esoil, the deterministic approach 

matched high density region only of MCRS. Simulated Roff and qbot were close to high density 

regions of one peak of the bimodal distribution. Although the deterministic approach may 

indicate some tendency in the simulated Y, T and Esoil, no conclusions about their frequency can 

be drawn. Moreover, for Roff and qbot, the deterministic standpoint is withholding information 

about the bimodal distribution. 

With these results we aimed to demonstrate the dependence of the simulated results 

performed by SWAP model to the sampling method. The uncertainty analysis is a key tool for 

more reliable interpretation of the water balance and crop yield in agro-hydrological systems 

and should be considered in agro-modelling studies. 
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Figure 3.6 Probability density function of the SWAP results, actual crop yield (Y), accumulated 

season runoff (Roff), accumulated season plant transpiration (T), accumulated season soil 

evaporation (Esoil), and accumulated season bottom flux (qbot) obtained using Monte 

Carlo Random Sampling (MCRS) (n = 1256) and Monte Carlo Latin Hypercube 

Sampling (MCLHS) (n = 1000). Dashed lines refers to the mean values for each 

sampling method and the black line refers to deterministic simulation (n = 9) 
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Table 3.4 Statistical characteristics of water balance components and crop yield for Monte Carlo 

Ramdom Sampling (MCRS) and Monte Carlo Latin Hypercube Sampling (MCLHS). 

Values for runoff, plant transpiration, soil evaporation and bottom flux are cumulative 

Method Realizations Statistics 
Actual crop 

yield (Y) 

Runoff 

(Roff) 

Plant 

transpiration (T) 

Soil 

evaporation 

(Esoil) 

Bottom 

flux (qbot) 

   kg ha-1 mm (season) 

MCRS 1256 

Mean 2409.52 172.84 273.48 125.38 -238.21 

Min 11.87 30.13 43.12 99.06 -440.39 

Max 4071.32 525.43 336.26 198.80 -0.09 

SD 631.08 90.92 29.63 11.48 88.57 

MCLHS 1000 

Mean 2638.43 184.91 283.03 125.95 -215.42 

Min 1266.46 40.82 228.91 107.77 -388.03 

Max 4017.00 341.90 334.22 143.33 -85.36 

SD 481.44 82.54 19.12 6.22 79.04 

3.3.3 Simulated water contents 

Water contents from the field measuring were compared with simulated water contents 

predict by the SWAP model. The 50% percentile of simulated water contents (θ50%) and the 

mean of the ten lower (Lw10) and upper (Up10) M-VG parameters were used as central and 

lower and upper boundaries, respectively. 

The model well described θ50% with relatively high accuracy for both horizons 

(Figure 3.7a), however misestimates occurred frequently. In the A horizon, θ50% was 

underestimated most of the period except after high intensity rainfall events and for the longest 

rainless period (18 to 27 November), in which water contents were overestimated. In general, 

θ50% was underestimated with the θf increment (higher than 0.25 cm3 cm-3) for both sampling 

methods (Figure 3.7b). In the Bt horizon, θ50% was underestimated during the entire simulated 

period, however it followed the θf trend better than for the A horizon (Figure 3.7b). 

The difference between θ50% and θf may be caused due to measuring errors in the field 

and model limitations. In the field, measurements of water content are prone to many factors 

which can lead to erroneous results. First, issues regarding FDR technique capability to 

determine soil water content should be considered (SUSHA; SINGH; BAGHINI, 2014). 

Second, issues regarding the probe installation can affect the measurements. Air gaps between 

the soil and the probe is a common concern regarding this technique (RAO; SINGH, 2011), 

moreover the presence of macropores and the roughness of the soil surface may affect water 

flow near the measurement site causing differences between measured and simulated water 

contents. The depth of water content determination in the field is also another drawback because 

it may slight differ from the adopted depth in the simulation. 
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Besides the issues with the observed field values, the SWAP model has its own 

limitations which affect predicted water contents. Although the SWAP model uses physical soil 

process descriptions, there are limitations to describe complex processes, e.g., soil evaporation 

(OR et al., 2013), which affect the water balance simulation. Also hysteresis in retention and 

conductivity properties may be an important limitation in field studies where water contents 

increase and decrease over time. Hysteretic behavior was not included in the analysis and 

simulations performed in this study. 

Simulated soil water contents from MCRS showed a wider range compared to MCLHS 

for both horizons, especially for the Bt. The lower (Lw10) and upper (Up10) bounds were mostly 

determined by the θs and n parameters for both horizons (Table 3.5). The Up10 of MCRS present 

higher values of θs and lower n values, whereas for the Lw10, higher values of n mostly 

contributed to lower θ50% since θs values were similar for both sampling methods. 

Figure 3.7 (a) Measured and simulated water contents with the lower limit (0.05 percentile) and 

upper limit (0.95 percentile) performed by the SWAP model for Monte Carlo Ramdom 

Sampling (MCRS) (n = 1256) and Monte Carlo Latin Hypercube Sampling (MCLHS) 

(n = 1000) for A and Bt horizons. (b) Mean θf from all sites of the area (n = 9) and θ50% 

for MCRS and MCLHS for A and Bt horizons 

 



73 
 

Table 3.5 Mean of the ten lower (Lw10) and upper (Up10) Mualem-van Genuchten parameters for 

Monte Carlo Ramdom Sampling (MCRS) and Monte Carlo Latin Hypercube Sampling 

(MCLHS) for A and Bt horizons 

Method Bound Horizon 
θr θs α n Ks 

cm3 cm-3 cm-1 - cm d-1 

MCRS 

Lw10 
A 0.04 0.35 0.040 2.18 15.97 

Bt 0.03 0.37 0.023 1.86 38.40 

Up10 
A 0.02 0.50 0.090 1.29 7.22 

Bt 0.01 0.51 0.282 1.14 20.22 

MCLHS 

Lw10 
A 0.03 0.35 0.083 1.61 17.01 

Bt 0.02 0.38 0.101 1.29 20.43 

Up10 
A 0.05 0.46 0.091 1.60 3.06 

Bt 0.01 0.47 0.217 1.21 5.34 

3.4 Conclusions 

Uncertainty analysis of SWAP model predictions for a 30 years simulation period for a 

soil under rainfed maize crop was realized using two Monte Carlo sampling methods. MCRS 

and MCLHS generated distinct ranges and formats of the probability density distributions of 

the Mualem-van Genuchten parameters, especially for n, whereas α did not showed much 

differences. 

The simulated water balance and crop yield also showed distinct ranges and shapes of 

probability density distributions for MCRS and MCLHS. The MCRS generated wider range of 

simulated results, while for Roff, Esoil and qbot showed remarkable differences in the probability 

density distributions shape. The relatively high standard error of M-VG parameters from MCRS 

may enhanced the uncertainty of the simulated results since it generated wider ranges of 

hydraulic parameters and because several restriction were imposed to eliminate unrealistic 

combinations of hydraulic parameters. In this study, we strongly recommend the LHS technique 

for the stochastic procedure since it seemed to generate more reliable hydraulic parameter 

combinations. 

The stochastic realizations may provide useful information about the uncertainties of 

model SWAP predictions and should be preferred over a mere deterministic method, which 

often provides results diverging those obtained from probabilistic methods. Moreover, 

uncertainty analysis provides key informations for risk analysis. 
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4 CONCLUDING REMARKS 

 

Agro-hydrological models are powerful tools for predict and simulate water balance and 

crop yield providing reliable information for decision-making processes. However, although 

many agro-hydrological have been developed in the past decades, they implicitly are 

simplifications of natural systems, and include assumptions and generalizations in their 

structure and parameterization. Furthermore, uncertainties related to model input parameters, 

model structure and numerical solution are inherent to the modelling process. 

The hydraulic properties characterization is still one the main issues in soil physics since 

soil water dynamics have a complex behavior, making its parameterization challenging. Many 

methodologies have been developed both for laboratory and field conditions, however they may 

provide diverging soil hydraulic properties for a given soil type. Moreover, related uncertainties 

are not readily provided by most of these methods. Added to these challenges, soil spatial 

variability either inherent or promoted by human activities, enhance the complexity of the 

characterization of the hydraulic properties. 

One strategy to overcome these issues is to apply numerical methods to obtain the soil 

hydraulic properties. This methods enable to use data measured in the field from transient flow 

using parameter optimization algorithms. However, these methods require initial soil and 

boundary conditions, and are depended upon the optimization algorithms potential. The 

hydraulic properties uncertainties are readily available, which can be used both for assess the 

quality of the hydraulic properties calibration and further uncertainty analysis. 

The modelling of natural systems deals with uncertainties. These uncertainties can be 

used to assess the reliability of model predictions and provide useful information for uncertainty 

reduction. However, the different sources of uncertainties and their inter dependence makes the 

uncertainty assessment complex. In agro-hydrological modelling, the parameters related to 

hydraulic properties have shown strong influence on the models predictions highlighting the 

importance of this study. 

Despite the importance of identification and quantifications of these sources of 

uncertainties, efforts towards a systematic and integrated manner to assess the uncertainty 

analysis in agro hydrological modelling should be made. More studies involving numerical and 

stochastic methods should be performed to improve the understanding of natural systems. 
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Appendix A: R algorithm used to perform the Latin Hypercube Sampling (LHS) and the 

stochastic realization of the SWAP model 

 

# Realisation: Thalita Campos Oliveira and Jan G. Wesseling 

# Date : May 28th 2018 

 ------------------------------------------------------------- 

# Function to replace strings with values in template file 

createInputFile <- function (pars, template, outputFile) { 

  success = TRUE 

  # pars should be a list 

  if (!is.list(pars)){ 

    stop("Argument pars should be a list") 

  } 

    names(pars) <- paste("<", names(pars), ">", sep="") 

   

  # Do parameters occur in template? 

  n <- sapply(names(pars), function(x)(length(grep(x,template)))) 

  if (any(n == 0)){ 

    stop(paste(names(pars)[which(n == 0)], collapse = " "), " not 

found in template!") 

  } 

    result <- template 

  for (i in 1:length(pars)){ 

    result <- gsub(pattern = names(pars)[i], replacement = 

pars[[i]], x=result) 

  } 

    # store result 

  writeLines(text = result, con = outputFile) 

  return(success) 

} 

#------------------------------------------------------------- 

# Inverse ecdf 
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inv_ecdf <- function(f){ 

  x <- environment(f)$x 

  y <- environment(f)$y 

  approxfun(y,x, rule=2) 

} 

#------------------------------------------------------------ 

# main program 

# read measured parameters for top layer 

dataA <- read.csv("D:/LatinHypercube/Data/ParA.csv", sep="\t") 

head(dataA) 

# read measured parameters for subsoil 

dataB <- read.csv("D:/LatinHypercube/Data/ParB.csv", sep="\t") 

head(dataB) 

# read correlation matrix 

correlationMatrix <- read.csv("D:/LatinHypercube/Data/corr.csv", 

sep=",", header = FALSE) 

head(correlationMatrix) 

#Create cumulative distribution functions and inverse 

alfaA <- dataA$alfa 

nA <- dataA$n 

thetaRA <- dataA$tetar 

thetaSA <- dataA$tetas 

kSA <- dataA$ks 

alfaB <- dataB$alfa 

nB <- dataB$n 

thetaRB <- dataB$tetar 

thetaSB <- dataB$tetas 

kSB <- dataB$ks 

alfaA.ecdf <- ecdf(alfaA) 

nA.ecdf <- ecdf(nA) 

thetaRA.ecdf <- ecdf(thetaRA) 

thetaSA.ecdf <- ecdf(thetaSA) 



85 
 

kSA.ecdf <- ecdf(kSA) 

alfaB.ecdf <- ecdf(alfaB) 

nB.ecdf <- ecdf(nB) 

thetaRB.ecdf <- ecdf(thetaRB) 

thetaSB.ecdf <- ecdf(thetaSB) 

kSB.ecdf <- ecdf(kSB) 

alfaA.ecdf.inverse <- inv_ecdf(alfaA.ecdf) 

nA.ecdf.inverse <- inv_ecdf(nA.ecdf) 

thetaRA.ecdf.inverse <- inv_ecdf(thetaRA.ecdf) 

thetaSA.ecdf.inverse <- inv_ecdf(thetaSA.ecdf) 

kSA.ecdf.inverse <- inv_ecdf(kSA.ecdf) 

alfaB.ecdf.inverse <- inv_ecdf(alfaB.ecdf) 

nB.ecdf.inverse <- inv_ecdf(nB.ecdf) 

thetaRB.ecdf.inverse <- inv_ecdf(thetaRB.ecdf) 

thetaSB.ecdf.inverse <- inv_ecdf(thetaSB.ecdf) 

kSB.ecdf.inverse <- inv_ecdf(kSB.ecdf) 

# Create parameter set 

# number of draws 

nRuns <- 250 

# number of parameters 

nParams <- 10 

#rawParamSet <- randomLHS(nRuns, nParams) 

# create parameter set 

myLHS <- LHS(factors = c("alfaA", "nA", "thetaRA", "thetaSA", "kSA", 

"alfaB", "nB", "thetaRB", "thetaSB", "kSB"), N = nRuns, method = 

"random") 

rawParamSet <- get.data(myLHS) 

# Apply correlation 

LHScorcorr(rawParamSet, COR = correlationMatrix, method = "Pearson", 

eps = 0.005, echo = TRUE, maxIt = 1000) 

rawParamSet 

# Create real parameters 
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realParams <- matrix(nrow = nrow(rawParamSet), ncol = 

ncol(rawParamSet)) 

for (i in 1:nrow(realParams)){ 

  realParams[i,1] <- alfaA.ecdf.inverse(rawParamSet[i,1]) 

  realParams[i,2] <- nA.ecdf.inverse(rawParamSet[i,2]) 

  realParams[i,3] <- thetaRA.ecdf.inverse(rawParamSet[i,3]) 

  realParams[i,4] <- thetaSA.ecdf.inverse(rawParamSet[i,4]) 

  realParams[i,5] <- kSA.ecdf.inverse(rawParamSet[i,5]) 

  realParams[i,6] <- alfaB.ecdf.inverse(rawParamSet[i,6]) 

  realParams[i,7] <- nB.ecdf.inverse(rawParamSet[i,7]) 

  realParams[i,8] <- thetaRB.ecdf.inverse(rawParamSet[i,8]) 

  realParams[i,9] <- thetaSB.ecdf.inverse(rawParamSet[i,9]) 

  realParams[i,10] <- kSB.ecdf.inverse(rawParamSet[i,10]) 

} 

realParams 

# correct NA 

for (i in 1:nrow(realParams)){ 

  for (j in 1:ncol(realParams)){ 

    k <- 0 

    while ((is.na(realParams[i,j])) & (k < 100)){ 

      k <- k + 1 

      rawParamSet[i,j] <- 1.01 * rawParamSet[i,j]; 

 #     cat(k, rawParamSet[i,j], realParams[i,j]) 

      realParams[i,j] <- case_when( 

        j==1 ~ alfaA.ecdf.inverse(rawParamSet[i,j]), 

        j==2 ~ nA.ecdf.inverse(rawParamSet[i,j]), 

        j==3 ~ thetaRA.ecdf.inverse(rawParamSet[i,j]), 

        j==4 ~ thetaSA.ecdf.inverse(rawParamSet[i,j]), 

        j==5 ~ kSA.ecdf.inverse(rawParamSet[i,j]), 

        j==6 ~ alfaB.ecdf.inverse(rawParamSet[i,j]), 

        j==7 ~ nB.ecdf.inverse(rawParamSet[i,j]), 

        j==8 ~ thetaRB.ecdf.inverse(rawParamSet[i,j]), 
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        j==9 ~ thetaSB.ecdf.inverse(rawParamSet[i,j]), 

        j==10 ~ kSB.ecdf.inverse(rawParamSet[i,j]) 

      ) 

    } 

  } 

} 

realParams 

# swap files 

baseDir <- "d:\\LatinHypercube\\swaprun\\" 

swpFileName <- paste(baseDir, "swap.swp", sep="") 

wbaFileName <- paste(baseDir, "result.wba", sep="") 

okFileName <- paste(baseDir, "swap.ok", sep="") 

crzFileName <- paste(baseDir, "result.crz", sep="") 

crpFileName <- paste(baseDir, "result.crp", sep="") 

# read template file 

swpTemplate <- "d:/LatinHypercube/Templates/Template.swp" 

swpData <- readLines(con = swpTemplate) 

# prepare dataframe for output 

runs <- data.frame(Runoff = numeric(nRuns), qRootPos = 

numeric(nRuns), qRootNeg = numeric(nRuns), evapSoil = 

numeric(nRuns), qBot = numeric(nRuns)) 

runs$Runoff <- NA 

runs$qRootPos <- NA 

runs$qRootNeg <- NA 

runs$evapSoil <- NA 

runs$qBot <- NA 

runs$yield <- NA 

# make runs 

for (i in 1:nrow(realParams)) { 

  cat(paste("Processing ", i, " of ", nrow(realParams), "\n", 

sep="")) 

  # alfa-values > 0.1e-3 
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  if(realParams[i,1] < 0.00011){ 

    alfaAc <- 0.00011 

  } 

  else 

  { 

    alfaAc <- realParams[i,1]  

  } 

  if(realParams[i,6] < 0.00011){ 

    alfaBc <- 0.00011 

  } 

  else 

  { 

    alfaBc <- realParams[i,6]  

  } 

  # put values into file 

  parameterValues <- list( 

    alfaA = formatC(alfaAc, format = "f"), 

    nA = formatC(realParams[i,2], format = "f"), 

    thetaRA = formatC(realParams[i,3], format = "f"), 

    thetaSA = formatC(realParams[i,4], format = "f"), 

    kSA = formatC(realParams[i,5], format = "f"), 

    alfaB = formatC(alfaBc, format = "f"), 

    nB = formatC(realParams[i,7], format = "f"), 

    thetaRB = formatC(realParams[i,8], format = "f"), 

    thetaSB = formatC(realParams[i,9], format = "f"), 

    kSB = formatC(realParams[i,10], format = "f") 

  ) 

  success <- createInputFile(pars = parameterValues, template = 

swpData, outputFile = swpFileName) 

  # run swap 

  runCommand <- paste(baseDir, "run.bat", sep="") 

  shell.exec(runCommand) 
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  Sys.sleep(2) 

  while (!file.exists(okFileName)){ 

    Sys.sleep(1) 

  } 

    # read output if run is ok 

  if (file.exists(okFileName)){ 

    swapOutput <- read.csv(file = wbaFileName, header=TRUE, as.is = 

TRUE, skip = 6) 

    n = nrow(swapOutput) 

    years <- 0 

    runoff <- 0.0 

    evap <- 0.0 

    qBot <- 0.0 

    for (k in 2:n){ 

      if (swapOutput$Day[k] == 1) { 

        years <- years +1 

        runoff <- runoff + swapOutput$RunOff[k-1] 

        evap <- evap  + swapOutput$Eact[k-1] 

        qBot <- qBot + swapOutput$Bot[k-1] 

      } 

    } 

    years <- years + 1 

    runs$Runoff[i] <- 10.0 * (runoff + swapOutput$RunOff[n]) / years 

    runs$evapSoil[i] <- 10.0 * (evap + swapOutput$Eact[n]) /years 

    runs$qBot[i] <- 10.0 * (qBot + swapOutput$Bot[n]) / years 

    crzOutput <- read.csv(file = crzFileName, header=TRUE, as.is = 

TRUE, skip = 6) 

    names(crzOutput) = c("Date", "Daynr", "Node", "Drz", "qRoot") 

    myRootPos <- 0.0 

    myRootNeg <- 0.0 

    for (j in 1:nrow(crzOutput)){ 

      if (crzOutput$qRoot[j] > 0.0){ 
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        myRootPos <- myRootPos + crzOutput$qRoot[j] 

      } 

      else 

      { 

        myRootNeg = myRootNeg + crzOutput$qRoot[j] 

      } 

    } 

    runs$qRootPos[i] <- 10.0 * myRootPos / years 

    runs$qRootNeg[i] <- 10.0 * myRootNeg / years 

    cropOutput <- read.csv(file = crpFileName, header = TRUE, as.is 

= TRUE, skip=7) 

    oldSum <- 0.0 

    yield <- 0.0 

    years <- 0 

    for (j in 1:nrow(cropOutput)){ 

      newSum <- cropOutput$DWLVCROP[j] + cropOutput$DWLVSOIL[j] + 

cropOutput$DWST[j] + cropOutput$DWRT[j] + cropOutput$DWSO[j] 

      if ((newSum < 1.0) & (oldSum > 1.0)){ 

        yield <- yield + oldSum 

        years <- years + 1 

      } 

      oldSum <- newSum 

    } 

    runs$yield[i] <- yield / years 

  } 

  else 

  { 

    cat("Problem with Swap") 

  } 

} 


