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ABSTRACT 

 

OSVALDO, J. R. P. Mapping soil organic carbon storage in deep soil horizons of 

Amazonian Podzols. 2015. 129 p. Tese (Doutorado) - Centro de Energia Nuclear na 

Agricultura, Universidade de São Paulo, Piracicaba, 2011. 

The Podzols of the world are divided into intra-zonal and zonal according to then location. 

Zonal Podzols are typical for boreal and taiga zone associated to climate conditions. Intra-

zonal podzols are not necessarily limited by climate and are typical for mineral poor 

substrates. The Intra-zonal Podzols of the Brazilian Amazon cover important surfaces of the 

upper Amazon basin. Their formation is attributed to perched groundwater associated to 

organic matter and metals accumulations in reducing/acidic environments. Podzols have a 

great capacity of storing important amounts of soil organic carbon in deep thick spodic 

horizons (Bh), in soil depths ranging from 1.5 to 5m. Previous research concerning the soil 

carbon stock in Amazon soils have not taken into account the deep carbon stock (below 1 m 

soil depth) of Podzols. Given this, the main goal of this research was to quantify and to map 

the soil organic carbon stock in the region of Rio Negro basin, considering the carbon stored 

in the first soil meter as well as the carbon stored in deep soil horizons up to 3m. The amount 

of soil organic carbon stored in soils of Rio Negro basin was evaluated in different map 

scales, from local surveys, to the scale of the basin. High spatial and spectral resolution 

remote sensing images were necessary in order to map the soil types of the studied areas and 

to estimate the soil carbon stock in local and regional scale. Therefore, a multi-sensor analysis 

was applied with the aim of generating a series of biophysical attributes that can be indirectly 

related to lateral variation of soil types. The soil organic carbon stock was also estimated for 

the area of the Brazilian portion of the Rio Negro basin, based on geostatistical analysis 

(multiple regression kriging), remote sensing images and legacy data. We observed that 

Podzols store an average carbon stock of 18 kg C m-2 on the first soil meter. Similar amount 

was observed in adjacent soils (mainly Ferralsols and Acrisols) with an average carbon stock 

of 15 kg C m-2. However if we take into account a 3 m soil depth, the amount of carbon stored 

in Podzols is significantly higher with values ranging from 55 kg C m-2 to 82 kg C m-2, which 

is higher than the one stored in adjacent soils (18 kg C m-2  to 25 kg C m-2). Given this, the 

amount of carbon stored in deep soil horizons of Podzols should be considered as an 

important carbon reservoir, face a scenario of global climate change.  

 

Keywords: Rio Negro basin. Amazon. Soil carbon stock. Remote sensing. 
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RESUMO 

 

OSVALDO, J. R. P. Mapeamento do estoque de carbono orgânico em horizontes 

profundos de Espodossolos da Amazônia. 2015. 129 p. Tese (Doutorado) - Centro de 

Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 2011. 

Os Espodossolos podem ser divididos em zonais e intrazonais de acordo com área onde 

ocorrem. Os Espodossolos zonais são típicos de áreas boreais e taiga, delimitados por 

condições climáticas. Já os intrazonais não são condicionados pelo clima. Os Espodossolo 

intrazonais brasileiros ocupam uma grande extensão da alta bacia amazônica, tendo sua 

formação atribuída à ocorrência de lençóis freáticos suspensos associados à acumulação de 

complexos organometálicos em ambientes ácidos redutores. Esses solos tem a capacidade de 

estocar grandes quantidades de carbono orgânico em horizontes espódicos profundos (Bh), 

em profundidades que podem variar de 1,5m a 5m. Pesquisas atuais relacionadas ao estoque 

de carbono em solos amazônicos, não levam em consideração os estoques encontrados no 

horizonte Bh (abaixo de 1m de profundidade). Sendo assim, o principal objetivo da presente 

pesquisa foi quantificar e mapear o estoque de carbono nos solos da bacia do Rio Negro, 

tendo-se em vista aquele estocado no primeiro metro de solo, bem como o carbono 

armazenado em até 3m de profundidade. A quantidade de carbono orgânico estocado nos 

solos da bacia do Rio Negro foi estimada em diferentes escalas de mapeamento, desde mapas 

locais até a escala da bacia do Rio Negro. Imagens de sensoriamento remoto de alta resolução 

espacial e espectral foram essenciais para viabilizar o mapeamento dos solos nas áreas 

estudadas e permitir a estimativa do estoque de carbono. Uma análise multisensor foi adotada 

buscando-se gerar informações biofísicas indiretamente associadas à variação lateral dos tipos 

de solo. Após o mapeamento do estoque de carbono em escala regional, partiu-se para a 

estimativa na escala da bacia do Rio Negro, com base em análise geoestatística (krigagem por 

regressão linear), imagens de sensoriamento remoto e base de dados de domínio público. 

Após o mapeamento do estoque de carbono na escala da bacia, constatou-se que os 

Espodossolos têm um estoque médio de 18 kg C m-2, para 1m de profundidade, valor similar 

ao observado em solos adjacentes (Latossolos e Argissolos) os quais tem um estoque de 15 kg 

C m-2. Quando são considerados os estoques profundos, até 3m, a quantidade de carbono dos 

Espodossolos é superior com valores variando de 55 kg C m-2 a 82 kg C m-2. Estoque 

relativamente maior que aquele observado em solos adjacentes para esta profundidade (18 kg 

C m-2 a 25 kg C m-2). Portanto, o estoque de carbono profundo dos Espodossolos, não deve 

ser negligenciado levando-se em conta cenários futuros de mudanças climáticas.  

 

Palavras-chave: Bacia do Rio Negro. Amazonas. Carbono orgânico do solo. Sensoriamento 

remoto. 
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1. INTRODUCTION 

According to several researches developed in the last decades (POST et al., 1982; 

BURINGH, 1984; KIMBLEET et al., 1990; SOMBROEKET et al., 1993; ESWARANET et 

al., 1993; BATJES, 1996), the soils of the world have the capacity of storing about 2.2 Gt 

(Gigatons) of carbon, which make them one of the most important global carbon sink. The 

amount of carbon stored in soils represents more than twice of the carbon found in 

atmosphere and is three times bigger than the one stored as above ground biomass (AGB) on 

vegetation. In Amazon region, most of the soil organic carbon (SOC) is stored as soil organic 

matter (SOM) on the first 0.3m soil depth (BATJES; SOMBROEK, 1997). Given this, the 

precise estimation of SOC stock in soils, is an urgent matter considering future models of 

global climate change.  

Most of the studies regarding global and regional estimates of SOC stock have taken 

into account the soil carbon stored in soils of temperate regions of Europa and North America. 

Few surveys were developed in natural areas of tropical and equatorial soils (BATJES, 1996). 

In 1996 Batjes (1996) carried out a study in tropical soils of America, Africa and Asia, which 

allowed for the update of the values presented in previous studies (POST et al., 1982; 

BURINGH, 1984; KIMBLE et al., 1990; SOMBROEK et al., 1993; ESWARAN et al., 1993). 

Therefore, Batjes (1996) concluded that the SOC stored in soils of tropical regions varies 

from 1.46 to 1.54 Pg (Petagrams), considering a soil depth of 0 to 0.3 m and 0 to 0.5 m, 

respectively. Surface and sub-superficial soil horizons were taken into account for SOC stock 

estimates because these depths are directly involved in interactions with the atmosphere and 

are sensitive to land use and environmental changes. However, great amounts of SOC occur 

in soil depths up to 2m in deep soil carbon pools of Acrisols, Ferralsols and Nitisols located in 

tropical regions, as well as in intrazonal Podzols (SOMBROEK et al., 1993). A few 

researches have considered the rule of deep SOC stock of Podzols on the global carbon soil 

reservoir (MONTES et al., 2011; PEREIRA et al., 2015). Therefore, a precise estimation of 

SOC stock in deep soil horizons is pointed out as a critical factor in implementing C trading 

programs, which depends on the understanding of the spatial distribution of SOC in order to 

quantify the capacity of soils in storing carbon.  

The Rio Negro Basin, located at the upper Amazon Basin, is marked by the occurrence 

of Ferralsol and Acrisols widely distributed and closely related to Podzols. Red clayey 

Ferralsols are commonly found at the margin of strongly dissected low elevation plateaus that 

belong to the pan American Ucayali peneplain (CAMPBELL et al., 2006). By contrast, 
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Podzols occur on poorly drained depressions of the central parts of the plateaus. Podzol 

formation is associated the downward and downslope migration of organic acids (PEDRO, 

1987) in highly porous sandy materials during the lowering of perched groundwaters. 

Accordingly, the soil orders in Rio Negro basin comprise two major end-members on the low 

elevation plateaus of this region, notably, Ferralsols/Acrisols association and Podzols. Recent 

research (MONTES at al., 2011) have shown that the transition between these two soil groups 

is marked by a clear increasing in deep SOC stock from ferralitic soils (Acrisols and 

Ferralsols) to Podzols. 

The occurrence of Amazonian Podzols was reported on both crystalline and 

sedimentary rocks. The Podzol formation is caused by the downward and downslope 

migration of organic acids in porous sandy materials during the lowering of the groundwater 

(BRAVARD; RIGHI, 1989; NASCIMENTO et al., 2004). The accumulation of organic acids 

causes the weathering of clay minerals and the formation of SOM-rich (Soil Organic Matter) 

organo-metallic complexes (NASCIMENTO et al., 2004). Subsequently, the Al and Fe 

previously incorporated in the mineral phases of the ferralitic environments (Ferralsols and 

Acrisols), become predominantly bound to organic matter in Podzols. The high porosity of 

the elluvial horizon (E) of Podzols explains the short residence time of water from the parched 

groundwater (NASCIMENTO et al., 2008) and its fast lateral fluxes (LUCAS et al., 1996) 

that enhances the lixiviation and acidification of the soils, driving the formation of thick deep 

Bh horizons, rich in organic matter. At the upper Rio Negro Basin there is a significant area 

covered by Podzols (Giant Podzols), where the time of evolution of these soils was sufficient 

to lead to the formation of large areas of Podzols with deep thick spodic horizons 

(DUBROEUCQ; VOLKOFF, 1998). In these regions, Montes et al. (2011) reported a SOC 

stock of about 13.6±1.1 PgC, which is at least 12.3 PgC higher than previous researches 

(BATJES; DIJSKHOORN, 1999). However, the estimate carried out by Montes et al. (2011) 

was developed according to a set of sample data located at the upper Rio Negro Basin, 

without precise extrapolation to the entire region of this basin. 

Nowadays, with a significant advance in remote sensing imagery and geoprocessing 

techniques, some researches (VAN-MEIRVENNE et al., 1996; POST et al., 2001) have 

shown the importance in developing digital SOC stock maps at different spatial scales such as 

plot, watersheds, regional, national and continental levels. With regards to Amazon forest, the 

Brazilian portion of the Amazon basin has an absolute area of 3.84 106 km², which makes it 

the world’s largest continental basin. In such an extensive region, the lack of field sample data 

and the absence of systematic soil surveys in deep soil profiles are among the main reasons 
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for the absence of SOC stock maps in regional map scale. The proper estimation of the SOC 

stored in Amazon soils, depends on a range of factors likely to affect SOC content such as soil 

types, land use, annual input of C biomass, relief, natural vegetation cover, lithology and 

climate (POST et al., 2001).  

The distribution of soil orders in Amazon basin is closely related to a series of 

environmental variables that are indirectly mapped through the interpretation of remote 

sensing imagery (eg.: relief, surface moisture, surface temperature and soil cover) provided by 

different sensor systems (PEREIRA et al., 2015). The northwest portion of the Amazon basin 

is characterized by the occurrence of a high dense evergreen rainforest, which makes it 

difficult the direct mapping of soil types by using remote sensing imagery (DUBROEUCQ; 

VOLKOFF, 1999; PEREIRA et al., 2015). Therefore, the lateral segmentation of soil orders 

depends on the association of remote sensing data (passive and active remote sensor systems) 

with field sample data and current soil maps available at regional map scale provided by 

legacy databases (IBGE, 2008; EMBRAPA, 2014). Given this, remote sensing data associated 

to field samples and legacy data, are essential in order to refine the current soil maps, which is 

critical to map and to quantify the SOC storage in Podzols of Rio Negro basin.  

The availability of legacy data systematically collected in Amazon region in the last 

decades (IBGE, 2008), was important to improve the map scale of previous maps 

(1:1,000,000) regarding soils, geology, geomorphology and soil cover, originally provided on 

the frame of the RADAMBRASIL project in 70th decade (BRASIL, 1977). Nowadays, the 

most refined maps available for this region are provided at the map scale of 1:250,000, which 

represent an important increment regarding a better understanding of the Amazonian biome. 

Moreover, IBGE (2008) has delivered a range of soil samples related to more than 400 soil 

profiles within the region of the Rio Negro basin. These profiles account to more than  

2,300 sampled horizons from soil depths ranging from 0.5 to 3m. The systematic database is 

compatible with GIS (Geographic Information Systems) allowing the spacialization of 

sampled profiles and the implementation of multivariate statistical analysis of environmental 

attributes with continuous coverage (eg.: relief and its derivatives, surface temperature, 

surface absolute reflectance in visible and infrared ranges of the electromagnetic spectrum) 

and categorical distribution (eg.: geology, soils, soil cover and geomorphology).  

Legacy data might be the only systematic source of information in the Amazon region 

(EASTER et al., 2007; IBGE, 2008; EMRAPA, 2014) and its usage for spatializing SOC 

stock is essential in order to improve the current SOC stock maps in Amazon (MONTES et 

al., 2011), especially regarding the SOC stored in deep soil horizons. Some effort has been 
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made in previous research to map the SOC storage in Amazon soils, however the soil samples 

considered in these researches were provided by continental legacy data in the frame of the 

SOTER-LAC (Soils and Terrain Database/Latin America) initiative (BATJES, 2002; 

EASTER et al., 2007), which is compatible with the map scale of 1:1,000,000. Based on 

IBGE (2008) database and the implementation of multivariate statistics, it is possible to 

generate SOC stock maps with a map scale of 1:250,000. Moreover, the quantification of deep 

SOC stock in Amazon soils is essential, due to the lack of studies addressing these stocks.  

Even the most refined systematic database available in Amazon basin (IBGE, 2008), 

has a few number of soil samples collected in Podzol areas. Moreover, the Podzol profiles 

have been sampled in soil depths ranging from 1 to 1.5m, disregarding deep spodic (Bh) 

horizons. Thus, detailed databases are necessary in area of Podzols in order to estimate the 

deep-SOC storage in Amazon soils. The estimation of deep-SOC storage is essential if we 

take into account a scenario of global climate change. The high rainfall around 2600 mm per 

year and the dense forest coverage are among the main factors that drive the podsolization 

process in hydromorphic conditions regarding Amazon Podzols. Climate models suggesting 

diminution in average annual rainfall usually take into account the mineralization of SOC 

pools in soil depths from 0-0.3 and 0-1m (CERRI et al., 2007).  

The decreasing in annual rainfall in the region of Rio Negro basin could change 

drastically the average groundwater level in areas of Podzols, which could affect the soil 

hydrologic regime leading to the oxygenation of elluvial and subsequently spodic horizons 

(MONTES et al., 2011). The high availability of oxygen might increase the microbial activity 

in deep SOC pools of spodic horizons causing the mineralization of organic carbon and the 

releasing of significant amounts of CO2 to atmosphere. Therefore, the proper quantification 

and mapping of deep SOC storage in Podzols is an urgent matter towards the proportion of 

SOC models considering a scenario of decreasing in annual rainfall in Amazon forest, for the 

next decades.  

The central hypothesis is that the amount of carbon stored in Podzols is higher when 

compared to adjacent soils (Ferralsols and Acrisols) and its spatial distribution is related to 

environmental variables that can be inferred by using regional maps, as well as from remote 

sensing imagery. Therefore, the main goal of this research was to quantify and to map the 

SOC storage of Amazon soils in the region of Rio Negro basin, taking into account the carbon 

pool stored in deep soil horizons. This research is organized in four chapters evolving the use 

of remote sensing imagery, field sample data and legacy data, in order to estimate the amount 

of SOC stored in soils of the Rio Negro basin. In the first chapter we explored the use of 
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multi-sensor imagery on the generation of high spatial resolution multispectral compositions 

by adopting image fusion approaches. The final multispectral fused images have an absolute 

spatial resolution of 5m. Thus, it was possible to generate multispectral compositions suitable 

for detailed mapping of soil cover in extensive regions of Amazon, which is essential for the 

refinement of current maps available in this region. The generation of high spatial resolution 

multispectral compositions by combining remote sensing data with different spatial, temporal, 

radiometric and spectral resolutions, is suggested as an efficient low cost method to map soil 

cover in Amazon region.  

In the second chapter, we discussed the application of remote sensing imagery to 

spatialize and to map soil groups in Amazon Podzols. Remote sensing images and field 

sample data were used to estimate the SOC stock at the studied area. The distribution of 

Podzols is closely related to the topography due to local variations on the groundwater level. 

Given this, a high variability on SOC content was found within Podzol areas, where we 

observed regions of well drained Podzols, seasonally flooded Podzols and overflooded 

Podzols. The availability of soil maps at regional map scale is an urgent matter to spatialize 

soil units within Podzols, which allows for a better understanding of the environmental 

attributes related to the lateral variation of SOC stock in Amazon Podzols.  

The chapters three and four refer to the estimation and mapping of SOC stock in the 

region of Rio Negro basin, taking into account deep soil horizons at 1m and 3m soil depths. 

The final maps were obtained by regression kriging of predicted values of SOC stock. The 

proper estimation of SOC stock in Rio Negro basin at the abovementioned soil depths 

depends on the modeling of the SOC stock by pedotransfer techniques and the interpolation of 

the resulted values by regression kriging, which allows the association of SOC stock with 

ancillary datasets. Thus, the presented method is complex and deals with a certain level of 

uncertainties; however the associated errors can be quantified. Given this, we were able to 

estimate and map the amount of SOC stored in deep soil horizons of Rio Negro basin, with an 

unprecedented precision.   
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1.1. INTRODUÇÃO 

De acordo com inúmeras pesquisas desenvolvidas nas últimas décadas (POST et al., 

1982; BURINGH, 1984; KIMBLEET et al., 1990; SOMBROEKET et al., 1993; 

ESWARANET et al., 1993; BATJES, 1996), os solos de todo o globo tem a capacidade de 

estocar em torno de 2.2 Gt (Gigatoneladas) de carbono, o que os tornam uma das mais 

importantes reservas de CO2 do planeta. A quantidade de carbono estocada nos solos 

representa o dobro daquela encontrada na atmosfera e é três vezes maior que o carbono 

armazenado na forma de biomassa vegetal. Na região Amazônica, a maior parte do carbono 

orgânico do solo (CO) está estocada na forma de matéria orgânica (MOS) nos primeiros 0,3m 

de profundidade (BATJES; SOMBROEK, 1997). Diante disso, destaca-se a necessidade de 

estudos mais aprofundados voltados a estimativa do estoque de CO do solo, considerando-se 

cenários futuros de mudanças climáticas. 

A maioria dos estudos voltados a estimativas locais e regionais do estoque de CO do 

solo levam em conta os estoques de regiões temperadas da Europa e América do Norte. 

Poucas pesquisas foram desenvolvidas em áreas tropicais e equatoriais (BATJES, 1996). No 

ano de 1996, Batjes (1996) estimou os estoques de CO de solos tropicais em regiões da 

América, África e Ásia, o que possibilitou a atualização de valores já apresentados em 

pesquisas anteriores (POST et al., 1982; BURINGH, 1984; KIMBLE et al., 1990; 

SOMBROEK et al., 1993; ESWARAN et al., 1993). Por meio deste trabalho, Batjes (1996) 

concluiu que os estoques de CO de solos tropicais variam de 1,46 a 1,54 Pg (Petagramas), 

considerando-se as profundidades de 0 a 0,3m e 0 a 0,5m, respectivamente. Foram 

considerados, portanto horizontes pedológicos superficiais e sub-superficiais, pois tais 

profundidades estão diretamente relacionadas com as interações com a atmosfera e são mais 

sensíveis a mudanças na cobertura do solo.  Porém, grandes quantidades de CO podem ser 

encontradas em horizontes pedológicos com até 2m de profundidade em áreas de Argissolos, 

Latossolos e Neossolos de regiões tropicais, bem como, em Espodossolos intrazonais 

(SOMBROEK et al., 1993).  

São poucas as pesquisas que levam em conta o papel dos estoques de carbono 

profundo dos Espodossolos na reserva global de carbono do solo (MONTES et al., 2011; 

PEREIRA et al., 2015). Sendo assim, novas estimativas mais precisas do estoque de CO são 

necessárias para a implementação de mecanismos de comercialização de carbono, o que 

depende de uma melhor estimativa da distribuição espacial de tais estoques no contexto da 

bacia amazônica.  
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A bacia do Rio Negro, localizada na alta bacia Amazônica, é marcada pela ocorrência 

expressiva de Argissolos e Latossolos com Espodossolos associados. Os Latossolos são 

comumente encontrados às margens dos platôs dissecados de baixa altitude pertencentes ao 

pediplano pan-americano Ucayali (CAMPBELL et al., 2006). Já os Espdossolos, ocorrem em 

depressões pouco drenadas nas regiões centrais dos platôs. A formação desses solos está 

relacionada à migração lateral e vertical de ácidos orgânicos (PEDRO, 1987) em horizontes 

pedológicos arenosos altamente porosos durante as fases de rebaixamento do lençol freático 

suspenso. Os tipos de solo encontrados na bacia do Rio Negro são compostos basicamente por 

dois grandes grupos compreendendo a associação Latossolo/Argissolo e os Espodossolos. 

Pesquisa recente desenvolvida nessa região (MONTES at al., 2011) constatou que a transição 

entre solos ferralíticos (Argissolos e Latossolos) e Espodossolos é marcada por um aumento 

significativo na quantidade de MOS estocada em horizontes profundos.  

A ocorrência de Espodossolos intrazonais amazônicos foi constatada em áreas de 

relevo cristalino e em zonas de rochas sedimentares. A formação destes solos é devida à 

migração lateral e vertical de ácidos orgânicos através de materiais arenosos, durante o 

rebaixamento do lençol freático (BRAVARD; RIGHI, 1989; NASCIMENTO et al., 2004). A 

acumulação de ácidos orgânicos leva a formação de compostos organo-metálicos ricos em 

matéria orgânica dissolvida (MOD) (NASCIMENTO et al., 2004). Os compostos de Al e Fe 

previamente incorporados à fase mineral em ambientes ferralíticos (Latossolos e Argissolos), 

se tornam predominantemente ligadas à matéria orgânica nos Espodossolos. A alta porosidade 

do horizonte eluvial (E) dos Espodossolos, explica o curto tempo de permanência do lençol 

freático suspenso (NASCIMENTO et al., 2008) e a prevalência de fluxos laterais rápidos 

(LUCAS et al., 1996) que acentuam os processos de lixiviação e acidificação desses solos, 

ocasionando a formação de horizontes espódicos espessos ricos em matéria orgânica. Na 

região da alta bacia do Rio Negro, há uma grande área coberta por Espodossolos 

(Espodossolos Gigantes), onde o tempo de evolução pedológica foi suficiente para possibilitar 

a formação de tais solos, com horizontes espódicos profundos e espessos (DUBROEUCQ; 

VOLKOFF, 1998). Nesta área, Montes et al. (2011) constatou que o estoque CO do solo está 

em torno de 13.6±1.1 PgC, valor que é 12.3 PgC superior àquele apresentado em pesquisas 

anteriores (BATJES; DIJSKHOORN, 1999). No entanto, as estimativas apresentadas por 

Montes et al. (2011) foram desenvolvidas com base em um conjunto de amostras coletadas na 

alta bacia do Rio Negro, sem possibilidade de uma extrapolação precisa para toda a região da 

bacia.  
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Atualmente, com o avanço nas técnicas de geoprocessamento e sensoriamento remoto, 

algumas pesquisas (VAN-MEIRVENNE et al., 1996; POST et al., 2001) ressaltaram a 

importância do mapeamento digital do estoque de CO do solo em diferentes escalas espaciais 

desde mapeamentos locais até mapas em escala continental. Com relação à floresta 

amazônica, a sua porção brasileira ocupa uma área aproximada de 3.84 106 km², 

compreendendo a maior bacia hidrográfica continental do planeta. Nesta região, a escassez de 

amostras de solo de horizontes pedológicos profundos pode ser apontada como a principal 

razão para a ausência de mapeamentos sistemáticos do estoque de CO do solo em escala 

regional. A adequada estimativa deste estoque depende de uma série de fatores que podem 

afetar a ocorrência de CO, tais como, tipos de solo, uso do solo, biomassa vegetal, relevo, 

vegetação, litologia e clima (POST et al., 2001). 

A distribuição espacial dos tipos de solo na bacia amazônica está relacionada a uma 

série de variáveis ambientais que podem ser indiretamente mapeadas por meio de 

interpretação de imagens de sensoriamento remoto (Ex.: relevo, umidade superficial, 

temperatura superficial e cobertura do solo) adquiridas por diferentes sistemas sensores 

(PEREIRA et al., 2015). A porção noroeste da bacia amazônica é caracterizada pela 

ocorrência de uma floresta densa que dificulta o mapeamento direto dos tipos de solo por 

meio de produtos de sensoriamento remoto (DUBROEUCQ; VOLKAFF, 1999; PEREIRA et 

al., 2015). Sendo assim, a segmentação lateral dos tipos de solo pode ser feita através da 

associação de imagens orbitais (sistemas de sensores ativos e passivos), amostras de campo e 

mapas temáticos da área de interesse em diferentes escalas (IBGE, 2008; EMBRAPA, 2014). 

Portanto, a associação de informações de diferentes fontes oferece uma alternativa 

interessante para o refinamento dos mapas de solo atualmente disponíveis em território 

amazônico. Tal aspecto é essencial para o mapeamento e quantificação do estoque de CO em 

Espodossolos da bacia do Rio Negro.  

A disponibilidade de dados gratuitos em território amazônico nas últimas décadas 

(IBGE, 2008), possibilitou o refinamento de mapas temáticos de solo, vegetação, 

geomorfologia e geologia em escalas menores (1:1.000.000) provenientes de estudos 

desenvolvidos na década de 70 no âmbito do projeto RADAMBRASIL (BRASIL, 1977). 

Atualmente, são disponibilizados mapas em escala absoluta de 1:250.000, envolvendo toda a 

Amazônia legal brasileira, o que representa um avanço importante no entendimento do 

funcionamento do bioma amazônico.  Além disso, o IBGE (2008) disponibilizou uma série de 

amostras de solo envolvendo mais de 400 perfis na região da alta bacia do Rio Negro. Tais 

amostras compreendem mais de 2300 horizontes amostrados para profundidades que variam 
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de 0,5 a 3m. Este banco de dados é compatível com sistemas de informação geográfica (SIG), 

o que possibilita a espacialização das amostras e aplicação de estatísticas multivariadas 

relacionada a atributos ambientais com distribuição contínua (Ex.: relevo e produtos 

derivados, temperatura superficial, refletância superficial absoluta nos comprimentos de onda 

do visível e infravermelho), como também dados categóricos (Ex.: geologia, solos, cobertura 

do solo e geomorfologia).  

Na região amazônica, dados sistemáticos disponibilizados por agências de pesquisas 

(EASTER et al., 2007; IBGE, 2008, EMRAPA, 2014) podem ser adotados para 

espacialização do estoque de CO viabilizando o refinamento das atuais estimativas já 

disponíveis (MONTES et al., 2011), sobretudo com relação ao estoque de horizontes 

profundos. Algumas pesquisas anteriores buscaram estimar o estoque de CO em solos da 

Amazônia, porém, as amostras consideradas foram extraídas de banco de dados continentais 

do projeto SOTER-LAC (Soils and Terrain Database/Latin America) (BATJES, 2002; 

EASTER et al., 2007), que é compatível com escala de mapeamento de 1:1.000.000. Com 

base em dados do IBGE (2008) combinados às técnicas de estatística multivariada, é possível 

a obtenção de mapas do estoque de CO com escala absoluta de 1:250.000. A quantificação do 

carbono profundo de solos amazônicos é de indispensável importância, considerando a 

ausência de estudos sistemáticos voltados à estimativa de tais estoques.  

Mesmo os mapeamentos sistemáticos mais refinados da região amazônica (IBGE, 

2008), tem uma pequena quantidade de amostras de solo coletadas em áreas de Espodossolos. 

Além disso, os perfis de solo limitam-se, em sua maioria, aos primeiros 1,5m de 

profundidade, desconsiderando os horizontes espódicos profundos (Bh). Diante disso, é 

necessária a obtenção de uma base de dados mais detalhada em áreas de Espodossolos 

buscando-se a estimativa do estoque de CO profundo. Tais estimativas são essenciais para a 

modelagem de cenários futuros de mudanças climáticas. A alta pluviosidade, em torno de 

2600 mm por ano e a densa cobertura vegetal são os principais fatores que possibilitam a 

podzolização em condições hidromórficas em áreas de Espodossolos amazônicos. Modelos 

climáticos que sugerem uma diminuição nas taxas anuais de chuvas para esta área, 

normalmente consideram estoques de CO do solo em profundidades de 0 a 0,3m e de 0 a 1m 

(CERRI et al., 2007). 

A diminuição da pluviosidade anual na região da bacia do Rio Negro poderia acarretar 

um drástico abaixamento no nível médio do lençol freático em zonas de Espodossolos, o que 

causaria uma mudança no regime hídrico do solo levando à oxigenação dos horizontes 

eluviais e espódicos (Bh) (MONTES et al., 2011).  O aumento na disponibilidade de oxigênio 
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atmosférico no solo pode acentuar a atividade microbiana em horizontes espódicos causando 

a mineralização do CO e a emissão de grandes quantidades de CO2 para a atmosfera. Sendo 

assim, é importante realizar a adequada estimativa e mapeamento do estoque de CO do solo 

em áreas de Espodossolos, buscando-se aprimorar modelos climáticos futuros que considerem 

diminuição gradativa nos índices de pluviosidade da Amazônia, para as próximas décadas.  

A principal hipótese é que a quantidade de carbono estocada nos Espodossolos da 

bacia do Rio Negro é mais elevada quando comparada aquela presente em solos adjacentes 

(Argissolos e Latossolos) e que a distribuição espacial destes estoques pode ser 

correlacionada com variáveis da paisagem representadas em mapas temáticos e imagens de 

sensoriamento remoto. Portanto, o objetivo desta pesquisa foi quantificar e mapear o estoque 

de CO de solos Amazônicos na região da bacia do Rio Negro, considerando-se horizontes 

pedológicos profundos.  

Este trabalho está organizado em quatro capítulos que tratam do uso de sensoriamento 

remoto, dados de campo e mapas temáticos, para a estimativa do CO estocado em solos da 

bacia do Rio Negro. No primeiro capítulo foi explorada a aplicação de imagens orbitais 

obtidas por diferentes sistemas de sensores para a obtenção de composições multiespectrais 

com alta resolução espacial, por meio da adoção de métodos de fusão de bandas. As imagens 

fusionadas resultantes têm uma resolução espacial absoluta de 5m. Com isso, foi possível a 

geração de composições multiespectrais compatíveis com mapeamento detalhado da cobertura 

do solo em grandes áreas de Amazônia. Tal aspecto é essencial para o refinamento dos atuais 

mapas de cobertura do solo disponíveis para essa região. Sendo assim, neste trabalho sugere-

se a geração de composições multiespectrais com alta resolução espacial por meio da 

combinação de imagens de sensoriamento remoto oriundas de diferentes sistemas de sensores 

com resoluções espacial, temporal, espectral e radiométrica, distintas. Esta metodologia pode 

ser adotada para o mapeamento detalhado da cobertura do solo na Amazônia com baixos 

custos.  

No segundo capítulo, discutiu-se a aplicação de imagens de sensoriamento remoto 

para a espacialização e mapeamento de grupos de solo em áreas de Espodossolos amazônicos. 

Imagens orbitais e dados de campo foram associados para estimar o estoque de CO na área 

estudada. Observou-se que a distribuição dos Espodossolos está intimamente relacionada à 

topografia devido a variações locais no nível dos lençóis freáticos. Foi constada uma alta 

variabilidade na quantidade de CO do solo em áreas de Espodossolos, onde se observou a 

ocorrência de Espodossolos bem drenados, Espodossolos sazonalmente alagados e 

Espodossolos alagados. Concluiu-se neste estudo, que a disponibilidade de mapas detalhados 
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de cobertura do solo para a região avaliada é de indispensável importância para a 

especialização dos diferentes tipos de Espodossolos que ocorrem nesta área, o que pode 

viabilizar uma melhor compreensão dos aspectos ambientais relacionados à variação do 

estoque de CO nos Espodossolos amazônicos.  

Os capítulos três e quatro abordam a estimativa e mapeamento do estoque de CO dos 

solos na região da bacia do Rio Negro, considerando-se os estoques até 1m e até 3m de 

profundidade. Os mapas finais foram obtidos por meio de krigagem por regressão dos valores 

preditos do estoque de CO. A adequada estimativa de tais estoques para a bacia do Rio Negro, 

de acordo com as profundidades abordadas, depende da modelagem da quantidade de CO na 

escala do perfil de solo, com base em métodos de pedotransferência e interpolação dos valores 

resultantes por krigagem, possibilitando a correlação com variáveis auxiliares.  Diante disso, o 

método utilizado é complexo e considera uma série de incertezas, porém, o erro associado 

pode ser quantificado. Com isso, foi possível estimar e mapear os estoques de CO profundo 

na região da bacia do Rio Negro, com uma precisão que ainda não havia sido alcançada. 
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2. New Approaches to Evaluate Fusion Algorithms Using Landsat 8 and CBERS 2B 

Images in Natural Regions of Amazon Forest and Zambezian Flooded Grasslands1 

 

Abstract 

Advances in remote sensing technology and the release of new sensor systems have been providing a 

wide range of optical and radar satellite images. The availability of such images gives new options for 

mapping relatively remote and sparsely settled territories. Given this, the main goal of this research 

was to perform a qualitative and quantitative assessment of the quality of a set of fused images 

obtained by CBERS 2B (HRC) and Landsat 8 (OLI) satellites over natural regions of Amazon Forest 

and Zambezian Flooded Grasslands, by the adoption of zonal and global quality evaluation 

approaches. Through the applied methodology we were able to combine the spectral resolution of 

Landsat 8 OLI images with the spatial resolution of the CBERS/HRC panchromatic band. The 

quantitative evaluation of the spectral and spatial quality of the fused products based on a zonal 

approach was essential to understand the spatial variability of the fusion quality, according to each 

fusion method. Based on the obtained results we observed that CBERS/HRC panchromatic bands can 

be satisfactorily applied in substitution of Landsat 8/OLI panchromatic band according to the ATWT 

and Ehlers fusion methods, allowing the generation of multispectral fused images with a 5-m spatial 

resolution.  

Keywords: Image Fusion, Landsat 8, CBERS, Image Enhancement, Regional soil cover maps 

 

2.1. Introduction 

The Brazilian Institute for Space Research (INPE) and the China Academy of Space 

Technology (CAST) have launched to space the China–Brazil Earth Resources Satellite 

(CBERS-4) in December 2014, allowing the continuity of the CBERS program. This mission 

has the main goal of providing high resolution multispectral and panchromatic images to 

develop researches concerning natural areas still poorly mapped, especially in Latin America 

and Africa (ABDON et al., 2009; DAL’ASTA et al., 2012). The CBERS-4 sensors will 

provide 3 bands on visible (green and red) and near infrared ranges of electromagnetic 

spectrum with a 10-m spatial resolution and one panchromatic band (Multispectral and 

Panchromatic Camera: PAN) with a 5-m spatial resolution. The CBERS-4 platform has three 

other cameras covering visible, near infrared, shortwave infrared (SWIR) and thermal infrared 

(TIR) regions of the electromagnetic spectrum (MUX, IRS and WFI sensors). 

 

                                                           
1  Submitted to the International Journal of Image Fusion (Taylor & Fracis. ISSN: 1947-9832), in July 2015. 

Authors: O. J. R. Pereira, C. R. Montes, T. C. T. Pissarra, Y. Lucas, A. Minghelli-Roman, A.J.Melfi 
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Around 70% of optical satellites on orbit nowadays generate bands on both modes, 

panchromatic and multispectral, usually with high and moderate spatial resolution, 

respectively (ZHANG 2004; 2008). Among then, it is important to highlight the Landsat 

program. The first Landsat satellite (Landsat 1/ MMS), was placed in orbit in 1972. Ever 

since, 8 satellites were launched until the Landsat 8 mission, currently in operation (USGS, 

2014). The ETM+ Landsat 7 (Enhanced Thematic Mapper plus) sensor was the first one to 

generate multispectral and panchromatic images with 30-m and 15-m spatial resolution, 

respectively. The availability of a panchromatic band was important to allow the generation of 

regional and detailed soil cover maps, considering the capability of applying image fusion 

techniques (FAUNDEEN et al., 2004). Due to the advances of the Landsat 7 mission, the 

panchromatic camera was then added to the OLI (Operational Land Image) sensor on Landsat 

8 platform. However, the band width was reduced to the visible range of the electromagnetic 

spectrum (0.50 to 0.68 µm) which might derail the application of fusion methods in the near 

infrared (NIR) and short wave infrared (SWIR).  

Image fusion techniques has been used as the combination of two or more images 

(MARCELINO et al., 2009; CHENG et al., 2011), and there is a great variety of fusion 

methods comprising different procedures with diverse equations from simple arithmetic 

operations to more sophisticated algorithms that applies a series of transformation on the 

original multispectral and panchromatic bands (DONG et al., 2013; KHALEGHI et al., 2013; 

XIA; LEUNG, 2014). The simplest techniques are easier to implement and can be promoted 

in most of GIS currently available. The more accurate fusion techniques might be difficult to 

apply due to the complexity of the base equations, but usually generate better results when 

compared to simpler algorithms. Some studies have investigated the quality of multispectral 

fused images based on qualitative and quantitative approaches (RANCHIN; WALD, 2000; 

RANCHIN et al., 2003; ALPARONE et al., 2007; GALIANO et al., 2012). The results of the 

quantitative approach are expressed as average values representing an overall index for the 

fused images compared to the reference image (global quality index). 

The quantitative evaluation of the quality of the fused images depends on the 

availability of a reference multispectral composition representing an optimal scenario 

regarding the spectral and spatial attributes (WALD et al., 1999; WANG; BOVIK, 2002; 

WANG et al., 2004). Thus, a feasible way to obtain the reference image would be through 

degradation of all available data to a coarser resolution and carrying out the fusion from the 

resulting degraded multispectral composition (WALD et al., 1997). To access and compare 

results, the average quality values are generated by a set of equations that evaluate the spatial 



32 

and spectral quality of the fused bands. The representation of the arithmetic mean for the 

whole scene might results in biased values, due to a considerable lateral variation of soil 

cover. Such problem can be solved by adopting a zonal approach (zonal sampling windows), 

which allows the generation of intermediate quality evaluation values for specific image 

features.  

The main goal of this research was to perform a qualitative and quantitative 

assessment of the quality of a set of fused images obtained by CBERS 2B (HRC) and Landsat 

8 (OLI) satellites over natural regions of Amazon Forest and Zambezian Flooded Grasslands, 

by the adoption of zonal and global evaluation approaches. The present paper intended also to 

investigate the applicability of CBERS panchromatic band in substitution of the panchromatic 

Landsat OLI band. 

2.2. Methodology 

The satellite images were acquired in two distinct areas with a great diversity of soil 

covers, from high dense rainforest in Amazon, to shrub savannas and seasonally flooded 

grassland fields in Zambia (Figure 2.1). The Amazon study area (Figure 2.1a) is located near 

the city of Santa Isabel do Rio Negro (Amazonas State). The mainly vegetation classes are the 

high dense rainforest, in regions of Acrisols and Ferralsols, associated to low convex hills and 

sclerophyllic vegetation (Campinarana) related to soils in hydromorphic conditions (Podzols 

and Gleysols) (BRASIL, 1977; IBGE, 2008). 

 
Figure 2.1 -  Studied areas. (a): Amazon Forest site; (b) Zambezian Flooded Grasslands (Zambia site). 

Multispectral composition (reference image) for both regions (Synthetic OLI bands: 

Blue/Green; Red/Near Infrared and SWIR 1/SWIR 2 - RGB).   
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The Zambia investigation site is located a few miles west from Mongu village (Figure 

2.1b). There is a great diversity of soil covers from flooded grasslands (Zambezian Flooded 

Grassland) related to seasonally flooded Podzols, to bare ground sites, usually associated to 

agricultural activity. The natural vegetation fields grade from grasses and lichens to shrubs 

and patches of savanna woodlands (BOOTH et al., 1994).  

2.2.1. Remote Sensing Data Acquisition and Preprocessing 

We adopted Landsat 8 OLI multispectral compositions (USGS, 2014) and CBERS 

HRC panchromatic bands (INPE, 2014) as shown in Table 2.1. The images were 

geometrically co-registered to a previously rectified Landsat 7 ETM+ composition (Universal 

Transverse Mercator, datum: WGS 1984), corrected and orthorectified to level 1B products, 

with a sub-pixel precision, considering ETM+ images with a 30-m spatial resolution (GLCF, 

2009).  

Table 2.1 - Summary of remotely sensed data. 

Satellite Images* Bands 
Spatial 

 Resolution 

Spectral  

Resolution (PAN) 

Radiometric 

Resolution 

Landsat 

Multispectral 

Blue, Green, Red, NIR, 

SWIR1, SWIR2 
30-m - 16 bits 

Landsat PAN. Panchromatic 15-m 0.50-0.68 µm  16 bits 

CBERS/HRC PAN Panchromatic 2.5-m** 0.50-0.80 µm 8 bits 

*Acquisition Date: Amazon site – Landsat (29/09/2014); CBERS 2B (04/01/2010). Zambia site - Landsat 

(08/12/2013); CBERS (15/07/2008).** Resampled to 5-m in this study. 

The positional accuracy has a root mean square Error (RMSE) better than 30m, 

(GLCF, 2009) on multispectral image, in both studied areas (Figure 2.1). There is a 

significant temporal difference between CBERS and Landsat OLI images, as shown in Table 

2.1, due to a low availability of cloud free scenes in Amazon region, and the failure of the 

CBERS 2B satellite in 2010. In Amazon area, there is no human disturbance on natural 

vegetation and the most significant spectral distortion between scenes collected in different 

periods is caused by seasonality. The area in Zambia has some agricultural activity, which 

might leads to seasonal changes on soil cover associated to the dynamic of those lands 

(HUEMMRICH et al., 2005; JIN et al., 2003). Therefore, atmospheric correction for the 

multispectral and panchromatic images was applied (ADLER-GOLDEN et al., 1999; BERK 

et al., 2002).  

The Landsat OLI bands have been atmospherically corrected using FLAASH Model 

(ENVI®), after conversion of image digital values to top of atmosphere radiance (TOA). The 

parameters used in this correction were set to tropical model. No cloud masking process was 

required, since the images were cloud-free scenes in both studied areas. The 5S physically-
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based calibration model MODTRAN (ADLER-GOLDEN et al., 1999; BERK et al., 2002) 

was applied with the aerosol model set to rural, the initial visibility was set to 40km and 35km 

for Amazon and Zambia sites, respectively. This method was applied for calibrating the 

following bands: blue, green; red; NIR; SWIR 1; SWIR 2 and OLI panchromatic band  

(OLI bands 2, 3, 4, 5, 6, 7 and 8, respectively). After calibration, the resulting reflectance 

images were rescaled to 8 bits.  

The atmospheric correction applied for panchromatic CBERS HRC bands, is based on 

an algorithm developed by Carlotto (1999). The algorithm allows dynamic selection of grey 

values as reference to be subtracted on the original scene. The chosen targets were selected in 

areas of clear water bodies, were pixel subtraction was carried out. After calibration, the 

resulting images were rescaled to 8 bits and resampled to a 5-m spatial resolution (bicubic 

resampling) to simulate the panchromatic band (HRC) that will be provided by the CBERS-4 

satellite. 

2.2.2. Description of the Applied Fusion Algorithms 

The images were resampled according to the flowchart on Figure 2.2, to match the 

resolution of the fused images with a 30-m spatial resolution (reference composition: Landsat 

OLI). The panchromatic channels of CBERS 2B and Landsat OLI satellites have different 

spectral, radiometric and spatial resolution. The method presented in Figure 2.2, was 

conducted in order to standardize the spatial resolution, according to the reference image.  

The ratio between the optical Landsat bands blue/green, red/NIR, SWIR 1/SWIR 2 

(RGB), allows synthesizing the spectral information of those channels in three bands, which 

makes it easier the application of fusion algorithms and the quantitative evaluation of results, 

saving computational time (RODRIGUEZ-GALIANO et al., 2012). The above-mentioned 

multispectral composition was used to simulate the reference image to be fused with the 

panchromatic HRC an OLI bands (Figure 2.2). 
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Figure 2.2 -  Flowchart of the methodology applied to evaluate the fusion algorithms by a zonal 

approach and by unsupervised classification of fused compositions.  

The flowchart in Figure 2.2 illustrates the applied method, carried out for evaluating 

quantitatively the fused compositions. Two steps were considered, one based on the direct 

zonal quantitative assessment and another one carried out by unsupervised classification 

(ISODATA) of the degraded fused images and the reference images. The results were 

generated for both studied areas (Figure 2.1), taking into account the fusion algorithms briefly 

described below:  

1. Color Normalized - Brovey. It is a simple and ease to implement method for combining 

data from different sensors. The algorithm consists of an arithmetic normalization of the 

spectral information on the three multispectral (MS) channels (RGB). After normalization, the 

resulting images are multiplied with the panchromatic high spatial resolution band (PAN), 

which allows the maintenance of the spectral feature of each pixel and the refinement of the 

spatial resolution of the fused MS composition. The general equation uses red, green, and 

blue (RGB) and the PAN bands as inputs to output new red, green, and blue bands with 

refined spatial resolution. 



36 

2. Principal Components: The principal component method is based on the transformation of 

the spectral information of the MS bands in principal components. Most of the spectral 

variability of the MS channels can be synthetized on the first component (CHÁVEZ et al., 

1991; SHAH, 2008). After a principal component analysis, the resulting first component of 

the low resolution MS composition is substituted by the PAN high resolution band. Finally 

the inverse transformation is applied to generate the RGB fused MS composition.  

3. Gram Schmidt: In this method, the spatial resolution of the MS image is enhanced by 

merging the high resolution single band (PAN) with the low spatial resolution MS bands 

(EASTMAN KODAK COMPANY, 2000). A lower spatial resolution panchromatic band 

(GS) is simulated using the multispectral bands as input. The simulated high resolution GS 

band is employed as the first band. Then, the PAN band is swapped with the first GS band. 

Finally, the inverse GS sharpening transform is applied to form the fused MS spectral bands. 

4. Intensity Hue and Saturation (IHS): The IHS method converts a three bands MS 

composition from the red, green and blue (RGB) space into the IHS color space. The intensity 

band (I) in the IHS space is replaced by a high-resolution PAN image. The final fused 

composite image is obtained by converting back the IHS components into the original RGB 

space (CHOI, 2006). 

5. Wavelet Transform: In Wavelet transformation the images are decomposed in high and 

low-frequency components, comprising the higher and the lower spatial resolution images, 

respectively. In this study we applied two different wavelet algorithms based on Mallat’s 

(DWT) (ZHOU, 1998; RANCHIN; WALD, 2000) and à trous wavelet (ATWT) 

transformations (NUÑEZ, 1999; RANCHIN et al., 2003). Each of the above-mentioned 

methods has specific mathematical properties and results in different image decompositions.  

6. Ehlers: The Ehlers method has the advantage of preserving the spectral information of the 

MS channels, while refining the spatial resolution based on the panchromatic image 

(EHLERS, 2004; EHLERS et al., 2006). To generate the high resolution fused composition, a 

series of algorithms are applied on the original MS and panchromatic bands. First, the spectral 

and spatial attributes are separated in different components, then the spatial information 

(PAN) is altered to allow adaptive enhancement of the images (Figure 2.3). 

A multiple IHS transformation is applied over the MS images until the total number of 

bands is exhausted, since the usual IHS algorithm is limited to three MS bands (RGB). After a 

Fast Fourier Transformation (FFT), the intensity component (I) is filtered using a Low Pass 

Filter (LPF) and the panchromatic image (PAN) is filtered with a High Pass Filter (HPF). 

These images are converted back into the spatial domain using an inverse Fast Fourier 
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Transformation (FFT-1) and combined to generate a fused intensity channel. An inverse IHS 

transformation (IHS-1) is performed to produce the final fused image that contains the spatial 

information from the panchromatic image and the spectral resolution of the multispectral 

image (Figure 2.3). 

 
Figure 2.3 -  Flowchart illustrating the Ehlers pansharpening procedure (EHLERS et al., 2006). 

 

Different fusion methods were used in order to generated seven fused MS composition 

for each studied area considering the following algorithms: Brovey (Br.); Principal 

Components (PC); Gram Schmidt (G.S.); Intensity Hue and Saturation (IHS); Discreet 

Wavelet Transform (DWT); À Trous Wavelet Transform (ATWT) and Ehlers (Eh). All 

resulting images are presented in 8 bits format (0 to 255 gray values), which allows the 

standardization of results for quantitative comparison and unsupervised classification.  

2.2.3. Qualitative Assessment 

The qualitative approach was carried out to evaluate visually the quality of fused MS 

images, considering the reference MS composition as an optimal scenario. The qualitative 

assessment refers to a subjective approach and depends on the experience of the person who is 

analyzing the images (RODRIGUEZ-GALIANO et al., 2012). A series of variables can be 

used to access the quality of the images. In this study we considered variations in tone, 

contrast, saturation, sharpness and texture of the fused images compared to the reference 

image. 
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2.2.4. Quantitative Assessment 

A zonal quantitative investigation was carried out by fusion quality evaluating 

algorithms regarding the assessment of spectral distortions: Correlation Coefficient (CC) 

(ZHANG, 2008); Erreur Relative Globale Adimensionnelle de Synthése (ERGAS) proposed 

by Wald (2000); Structural Similarity Index (SSIM) (WANG et al., 2004) and spatial 

distortions: Spatial Quality Metric index (SM) (OTAZU et al., 2005).  

1. Correlation Coefficient (CC) 

Given two images x and y the correlation coefficient CC is given as: 

CC (x, y) =  
∑ (xi −  x̅)(yi −  y̅)n

i=1

√∑ (xi −  x̅)n
i=1

2
 √∑ (yi − y̅)n

i=1
2

 
Eq. 2.1 

Where   x̅  and  y̅ are the mean gray values of the reference and the fused bands 

respectively, and CC is estimated globally for each MS band. The result of this equation 

shows similarity in the small structures between the original and fused images. The resulting 

values ranges from -1 to 1. 

2. ERGAS 

ERGAS (Equation 2.2) is an acronym in French for “Erreur relative globale 

adimensionnelle de synthese” which translates to relative dimensionless global error in 

synthesis. ERGAS is used to calculate the amount of spectral distortion between fused and 

reference images and is given by the following equation:  

ERGAS =  100
h

l
√

1

N
∑ (

RMSE(n)

μ0(n)
)

2

              

N

n=1

 Eq. 2.2 

Where h/l is the ratio between the spatial resolution of the panchromatic image and the 

MS image, N is the number of spectral bands of the fused image, µ0 is the mean value of each 

spectral band, and RMSE (relative root mean square error) represents the difference of 

standard deviation and mean of the fused and the original image. The best possible value for 

ERGAS is zero. According to experiments carried out by Wald et al. (1999) an ERGAS value 

below 3 corresponds to fused images of satisfactory quality.   
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3. Structural Similarity Index (SSIM) 

The Structural Similarity index (Equation 2.3) was proposed by Wang et al. (2004) 

and takes into account the luminance, contrast and structure differences, between each band of 

the fused and original multispectral images, resulting in a global index representing the fusion 

quality.  

SSIM (x, y) =  
(2 ∗ μx ∗ μy + C1)(2 ∗ σxy + C2)

(μx
2 + μy

2 + C1 )(σx
2 +  σy

2 + C2 )
 Eq. 2.3 

Where x and y are two non-negative image signals (grey value) for fused and 

reference bands, respectively. μx and μy are the mean luminance of images x and y, while σxy, 

σx and σy are the covariance and the variances of image x and y, respectively. C1 and C2 are 

constants defined by Wang et al. (2004). The index result takes values between 0 and 1. The 

closer the SSIM index to one the better the fused image. 

4. Spatial Quality Metric Index (SM) 

The extraction of spatial features is necessary before carrying out the SM algorithm. 

This procedure is done by applying a Laplacian filter over all fused and reference MS bands. 

The correlation coefficient (CC) is then estimated for corresponding bands and the derived 

values are averaged resulting in the overall spatial measure. The SM index is mathematically 

expressed as follow (Equation 2.4): 

SM (x, y) =  
1

𝑁
∑ 𝐶𝐶𝑖

𝑛

𝑖=1

 Eq. 2.4 

Where N is the total number of MS bands and CC represents the correlation coefficient 

obtained by the Equation 2.5:   

𝐶𝐶𝑖(X, Y) =
 σ𝑋𝑖 𝑌𝑖

( σ𝑋𝑖 σ𝑌𝑖)
⁄  

Xi = X * l ;  Yi = Y * l 

Eq. 2.5 

Where X and Y are the ith bands in the reference and fused images, respectively, * is 

the convolution operator, l is a Laplacian filter, set by Otazu et al. (2005) as:  

𝑙 = [
−1 −1 −1
−1 8 −1
−1 −1 −1

] 



40 

The spatial quality (SM) results in values within a range of -1 to 1 where 1 indicates 

the best spatial quality. 

The quantitative evaluation algorithms (Equation 2.1 to Equation 2.4) result in a single 

quality index for each fused MS band. Nevertheless, local variations in fused bands might 

occur due to differences related to specific image features, depending on the fusion algorithm. 

Thus, the numerical expression of the fusion quality by means of a global value might leads to 

biased results, especially considering fusion methods that cause a high standard deviation 

between the reference and the fused bands. Given this, the zonal approach applied in this 

study, have generated a range of values for each fused band. The results of the quantitative 

approach evolving each fusion method were compared by descriptive and multivariate 

statistics (Cluster Group Analysis), taking into account the spatial behavior of the quantitative 

index, considering the diversity of targets identified in both studied areas.  

A principal component analysis (PCA) was carried out between the covariance (CC) 

and SSIM indexes in order to estimate the variance among the fusion methods for each fused 

composition in the two studied areas. After PCA analysis, we were able to identify the 

quantitative index that would be grouped together to run the grouping cluster analysis. Given 

this, the index results were standardized and integrated (PC and IHS methods were not used 

due to the high standard deviation when compared to the other methods) to generate the 

cluster group map. We divided the groups into four levels organized by overall quality for the 

Landsat/HRC and Landsat/OLI fused images in Amazon and Zambia region. The cluster 

loadings were associated to each sampling window with values ranging from 0 to 3 (low to 

high quality, respectively). The resulting cluster maps were obtained by ordinary kriging 

interpolation of the cluster values associated to the sampling windows. 

2.2.5. Quality Evaluation by Unsupervised Classification 

The indirect quantitative analysis was carried out by comparing the classification results 

of the reference and fused images through the application of unsupervised classification 

algorithms (CONGALTON, 1991; CONGALTON; GREEN, 1999; RODRIGUEZ-

GALIANO et al., 2012). The ISODATA unsupervised classification (LILLESAND et al., 

1987), was applied in order to classify the fused images. The reference MS composition was 

classified using the same algorithm, with the same parameters and the resulting classified 

image was used as truth image. Classification accuracy has been assessed by calculating the 

confusion matrix and the Kappa index (CONGALTON, 1991; CONGALTON; GREEN, 

1999). 
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2.3. Results 

The selected fusion algorithms comprise easy to implement methods, extensively 

applied to merge moderate and high resolution satellite images. These methods range from 

simple arithmetic operations to complex algorithms, based on the application of convolutions 

and filters. A significant difference between fused MS compositions was observed, which 

emphasizes the effectiveness of the quality assessment by a zonal approach, which adopts 

local sampling windows to estimate quantitative.  

2.3.4. Qualitative Assessment 

The MS compositions (Landsat OLI) fused with the panchromatic bands CBERS/HRC 

and PAN/OLI, for both investigation areas, are referred as Landsat/HRC and Landsat/OLI, 

respectively. The image fusion process has generated a great number of MS compositions  

(14 fused MS images for each area). The qualitative assessment was carried out by means of a 

general inspection in order to evaluate, visually, the quality of the fused compositions. After 

analyzing the images, the most significant results were selected to describe the algorithms that 

caused significant visual distortions. 

Amazon Site: The dense vegetation cover and the drainage network are the most 

remarkable features in this area. The E.h. and DWT methods resulted in less spectral 

distortion for both fused compositions (Landsat/HRC and Landsat/OLI), and a significant 

change in spatial quality (blurred effect) was observed, mostly regarding water bodies and 

sand banks. The ATWT and G.S. methods returned satisfactory results enhancing the spatial 

quality and maintaining the spectral pattern, for the Landsat/HRC fusion. However, the 

Landsat/OLI fused images have significant spectral distortion, due to the spectral resolution of 

the Landsat panchromatic band (0.50 to 0.68 µm), which caused the loss of spectral 

information of the infrared OLI channels. The HSV, PC and CN methods refined the spatial 

resolution but caused a significant negative impact on the image spectral quality, causing 

color saturation and contrast decreasing.  

Zambia Site: In Zambia region the overall visual quality of fused MS images was 

better when compared to the results obtained in Amazon, probably due to soil coverage 

characterized by sclerophyllic vegetation (shrubs and grasses) and a vast area of bare soils and 

flooded lands. The land features have a lower overall reflectance in infrared range of the 

electromagnetic spectrum, which causes a lower influence of NIR and SWIR channels on the 

merging process. We observed similar results for Landsat/HRC and Landsat/OLI fused 

compositions, highlighting a good performance of E.h., ATWT and G.S. methods. The HSV, 
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PC and CN methods have returned unsatisfactory results due to the same reasons observed in 

Amazon site. 

Taking into account the qualitative assessment of fused images, we observed that the 

best results were achieved for the E.h. and ATWT methods. The DWT, G.S. and PC methods 

might generate satisfactory results, depending on the area and the images used in the fusion 

process. Ultimately, the IHS and B.r. methods resulted in images with significant spectral 

distortions for all fused compositions. 

2.3.2. Quantitative Assessment 

The quantitative assessment depends upon the availability of a reference image that 

can be obtained according to method presented in Figure 2.2. After the fusion procedure, a 

statistical global parameter is obtained from the fused and the reference MS images. 

Traditionally, the statistical results are presented as unique values for each fused band 

(CONGALTON, 1991; CONGALTON, 1999; ALPARONE et al., 2007). A mask was applied 

in order to generate statistical parameters in zonal sampling windows (each sampling window 

has an area of 200 m², which covers 255 pixels for Landsat OLI multispectral bands). The 

obtained spatially dependent statistical index varies according to the spectral and spatial 

behavior of the image features. Moreover, the results are expressed as a range of values 

instead of just one global value, allowing a more accurate investigation of the quality of the 

fused compositions. 

The per-band analysis was carried out by evaluation of correlation coefficients (Table 

2.2), considering the global average. High correlation values were observed for the synthetic 

Red/NIR fused band (B2, Table 2.2), followed by the SWIR1/SWIR2 band (B3, Table 2.2). 

The worst performance was observed for the Blue/Green band (B1, Table 2.2), in Zambia site, 

probably due to the interference of atmospheric aerosols and the high reflectance related to 

the blue and green ranges of the electromagnetic spectrum (extensive area of bare soils). With 

regards to differences between fusion algorithms, the Eh. method returned the best result 

followed by the ATWT method. The IHS and Br. algorithms are the less correlated to the MS 

reference image with a significant deviation for B1 and B3. Ultimately, the DWT, G.S. and 

PC methods had similar results, for all fused MS images in the two studied areas. 
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Table 2.2 - Band by band correlation values between the original multispectral image and the degraded 

fused images. 

 
Zambia Site Amazon Site 

 
Landsat/HRC Landsat/OLI Landsat/HRC Landsat/OLI 

 
B1* B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 

Eh. 0.93 0.91 0.87 0.52 0.92 0.53 0.95 0.87 0.94 0.97 0.89 0.96 

ATWT 0.53 0.89 0.53 0.53 0.91 0.54 0.75 0.85 0.76 0.76 0.88 0.76 

G.S. 0.53 0.88 0.53 0.53 0.90 0.53 0.75 0.85 0.76 0.76 0.85 0.76 

PC 0.53 0.89 0.53 0.53 0.90 0.53 0.74 0.78 0.75 0.74 0.79 0.75 

DWT 0.49 0.84 0.51 0.52 0.89 0.53 0.72 0.81 0.74 0.73 0.85 0.75 

IHS 0.38 0.64 0.40 0.39 0.66 0.42 0.69 0.60 0.44 0.28 0.65 0.47 

Br. 0.15 0.44 0.34 0.15 0.44 0.28 0.19 0.35 0.67 0.28 0.52 0.22 

*Synthetic bands: B1-blue/green; B2-red/infrared; B3: SWIR 1/SWIR 2. 

The quantitative assessment of fused images in different scenarios is an openly 

debated topic, considering that the studies concerning quantitative evaluation of fused images, 

have not established yet which algorithm would be more accurate (THOMAS; WALD, 2005; 

KHALEGHI et al., 2013). The proposal of spatially dependent evaluation algorithms helps on 

a better comparison between methods and a detailed visualization of the behavior of each 

method according to different soil covers. The zonal results of Correlation Coefficient (CC), 

ERGAS, SSIM and SM are shown in Figure 2.4 and Table 2.3. A range of values  

(2000 sampling windows) were generated according to the zonal sampling windows, band by 

band, referent to each image fusion method. The descriptive statistic was applied in order to 

evaluate qualitatively the fused images (Table 2.3; Figure 2.4). 
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Table 2.3 – Descriptive statistics (arithmetic mean, variance and standard deviation) for the fused 

images according to the four quantitative evaluation algorithms.  
 

 
Amazon (Landsat/HRC) Zambia (Landsat/HRC) Amazon (Landsat/OLI) Zambia (Landsat/OLI) 

 
 

Mean Var. SD Mean Var. SD Mean Var. SD Mean Var. SD 

C
o

rr
el

at
io

n
 

ATWT 0.24 0.05 0.23 0.47 0.02 0.14 0.39 0.05 0.22 0.74 0.01 0.09 

PC 0.28 0.08 0.27 0.40 0.02 0.15 0.20 0.02 0.14 0.57 0.01 0.11 

DWT 0.27 0.07 0.26 0.48 0.02 0.13 0.34 0.05 0.22 0.63 0.01 0.12 

Eh. 0.29 0.04 0.19 0.50 0.01 0.12 0.43 0.02 0.15 0.78 0.01 0.08 

G.S. 0.25 0.08 0.28 0.41 0.02 0.15 0.27 0.05 0.23 0.66 0.01 0.11 

IHS 0.26 0.07 0.26 0.42 0.03 0.16 0.35 0.04 0.20 0.71 0.01 0.09 

Br. -0.21 0.09 0.31 0.41 0.02 0.15 -0.24 0.07 0.26 0.66 0.01 0.11 

E
R

G
A

S
 

ATWT 2.38 3.21 1.79 6.83 0.80 0.90 2.29 3.00 1.73 6.83 0.80 0.90 

Br. 226.37 348.20 59.01 125.70 8.66 2.94 74.15 298.96 17.29 125.70 8.66 2.94 

DWT 2.68 5.13 2.27 8.15 54.09 7.35 9.03 181.60 42.63 8.15 54.09 7.35 

Eh. 0.16 0.01 0.12 0.06 0.00 0.02 0.10 0.00 0.05 0.06 0.00 0.02 

G.S. 2.60 3.62 1.90 6.78 0.54 0.74 2.52 1.83 1.35 6.78 0.54 0.74 

IHS 6.70 656.69 25.63 16.01 278.23 16.68 4.17 6.54 2.56 16.56 490.91 22.16 

PC 3.78 3.08 1.75 6.79 0.52 0.72 3.41 7.21 2.68 6.79 0.52 0.72 

S
S

IM
 

ATWT 0.78 0.01 0.08 0.65 0.00 0.03 0.80 0.01 0.09 0.66 0.00 0.03 

Br. 0.39 0.00 0.05 0.48 0.00 0.02 0.54 0.00 0.05 0.49 0.00 0.01 

DWT 0.76 0.01 0.09 0.61 0.00 0.05 0.78 0.01 0.09 0.64 0.00 0.05 

Eh. 0.91 0.00 0.06 0.90 0.00 0.03 0.93 0.00 0.07 0.66 0.00 0.03 

G.S. 0.78 0.01 0.08 0.65 0.00 0.02 0.78 0.01 0.07 0.66 0.00 0.03 

IHS 0.60 0.01 0.07 0.47 0.00 0.04 0.62 0.01 0.10 0.49 0.00 0.05 

PC 0.76 0.01 0.07 0.65 0.00 0.02 0.76 0.01 0.07 0.66 0.00 0.03 

S
M

 

ATWT 0.12 0.02 0.15 0.29 0.01 0.11 0.24 0.03 0.18 0.42 0.01 0.09 

Br. 0.10 0.02 0.12 0.29 0.01 0.11 0.13 0.02 0.15 0.33 0.01 0.09 

DWT 0.12 0.02 0.14 0.29 0.01 0.10 0.28 0.02 0.15 0.35 0.01 0.09 

Eh. 0.07 0.01 0.10 0.29 0.01 0.11 0.23 0.01 0.11 0.46 0.01 0.11 

G.S. 0.10 0.02 0.13 0.29 0.01 0.11 0.23 0.02 0.15 0.38 0.01 0.11 

IHS 0.11 0.02 0.13 0.26 0.01 0.10 0.34 0.02 0.15 0.38 0.01 0.09 

PC -0.10 0.03 0.16 0.29 0.01 0.12 -0.14 0.03 0.17 0.39 0.01 0.11 
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Figure 2.4 -  Box-plots with jitters. Dark gray jitters (Landsat/HRC); Light gray jitters (Landsat/OLI). 

The “out of range” boxes represent Br. algorithm with high ERGAS values.  
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The merging procedure (Table 2.3) has generated a great volume of data. Thus, an 

easy way to verify and to compare the quality of the fused images is through the interpretation 

of box-plots (Figure 2.4) with jitters (grey dots: Figure 2.4). Based on a quick inspection of 

the plots we were able to identify and group the fused images by quality. A similar behavior 

was observed on the fused images Landsat/HRC and Landsat/OLI in both Amazon and 

Zambia regions, even considering an image ratio of 6 for the Landsat/HRC against 2 for the 

Landsat/OLI. However, the Landsat/OLI images have slightly better SM coefficients when 

compared to Landsat/HRC images.  

Analyzing the covariance in Amazon area, we observed a biased behavior with a 

significant difference between mean and median, for all fused images (Figure 2.4). The 

distribution is skewed downward the median (jitters) with a few larger values closer to 1. The 

SSIM for Amazon has the opposite behavior and most of the measured data trends to values 

closer to one, which can be clearly inferred by the jitters, interloped under the boxplots. 

However, in both charts we observed a similar behavior regarding the overall accuracy of the 

merging algorithms. The ERGAS algorithm maximized the difference between methods, with 

a considerable high deviation for IHS and Br. in both studied areas (Table 2.3; Figure 2.4), 

but the mean and median values are always below 20. The SSIM and ERGAS indexes have 

shown the same pattern in Amazon and Zambia region with good performances for Eh. and 

ATWT methods and intermediated values for G.S., DWT and PC. Unsatisfactory results were 

obtained for IHS and Br. methods due to color saturation and introduction of chromatic 

distortions (Table 2.3; Figure 2.4).  

The SM index indicates the amount of spatial detail of the panchromatic image 

injected on the MS composition. Concerning this index, we observed a different pattern when 

compared to the other evaluation indexes (covariance, ERGAS and SSIM). The overall spatial 

quality of the Landsat/OLI images was better than Landsat/HRC images in Amazon region 

and very similar in Zambia region.  The best methods were ATWT, DWT and IHS in 

Amazon, but in Zambia all methods resulted in very close indexes with a better performance 

for the Eh. method (Landsat/OLI fusion). The quantitative evaluation was useful on 

highlighting the statistical behavior of the fused images according to each method. However, 

we were not able to identify how the lateral variation of the image features interferes on the 

merging process. Thus, we applied a grouping cluster analysis in order to evaluate the 

interference of soil cover in the fused images.  

The spatial variability of the fusion quality follows the same pattern in both studied 

areas with a higher performance in homogenous regions of vegetation and lower fusion 



47 

 

 

quality in zones of water bodies and bare soil. In Amazon region the higher quality is related 

to the rainforest cover, while the lower values occur in zones of water bodies and in fluvial 

sand deposits of the Rio Negro (Figure 2.5a). In Zambia the lateral variability of the fusion 

quality is more complex, with satisfactory values associated to extensive areas of dryer 

grasslands and pastures and lower quality in zones of flooded depression (Figure 2.5c and 

2.5d).  The results presented in the cluster maps were useful on describing the quality of the 

fused compositions according to different soil cover and to highlight the similarity between 

the Landsat/HRC and Landsat/OLI images. The fusion trends to better results in areas of 

homogeneous features (grasslands and rainforest) and has lower quality in zones with higher 

variety of targets (river/lake borders and regions of human intervention: crops and roads). 

 
Figure 2.5 -  Overall quality of the fusion methods ATWT, Eh., DWT, GS and PC grouped by clusters. The 

MS compositions illustrate the ATWT fused images: (a) Amazon – Landsat/HRC; (b) Amazon – 

Landsat/OLI; (c) Zambia – Landsat/HRC and (d) Zambia – Landsat/OLI. A representation of the 

zonal sample windows is shown in Figure 2.5a, as light gray lines. 
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2.3.3. Indirect Quantitative Assessment 

The realizing of 5-m spatial resolution HRC panchromatic bands in 2015 (CBERS-4) 

by free, represents an important step on the understanding of natural environments in regional 

and local map scales in South America and Africa. Therefore, the evaluation of classified 

fused MS compositions is a key aspect to describe the use of fused data from different sensor 

systems to map soil cover in natural regions. Given this, we carried out an ISODATA 

unsupervised classification with the same parameters for the reference and the degraded fused 

images, in both studied areas (LILLESAND et al., 1987). The parameter used to access the 

quality of the classified images was relative to the ground truth image (Landsat/OLI MS 

composition) that was obtained by a fully automated process. Thus, the classes of the 

reference image have not specified topology according to the soil cover, but represent the 

classes obtained by the ISODATA classification of the reference image.  

Table 2.4 - Overall accuracy (O.A. in %) and kappa coefficient for the classified images according to 

different fusion methods.  

 
Amazon: Landsat/HRC Amazon: Landsat/OLI Zambia: Landsat/HRC Zambia: Landsat/OLI 

 
O.A. Kappa O.A. Kappa O.A. Kappa O.A. Kappa 

ATWT 60.32 0.48 60.23 0.47 34.08 0.20 50.73 0.41 

Br. 6.16 -0.04 3.36 -0.05 26.05 0.10 30.33 0.16 

DWT 58.67 0.33 55.04 0.26 29.29 0.14 32.56 0.18 

Eh. 73.22 0.55 77.83 0.62 39.40 0.26 59.66 0.51 

G.S. 44.21 0.27 29.37 0.12 25.14 0.09 30.46 0.16 

IHS 41.07 0.21 14.24 0.01 25.15 0.09 25.73 0.09 

PC 48.64 0.30 39.87 0.20 32.44 0.18 49.37 0.39 

We specified a maximum of 7 and a minimum of 5 classes and the process has 

generate 6 classes within the reference and all fused images for ISODATA classification of 

the Amazon area (Table 2.4). In this region the O.A. and kappa coefficient are higher for the 

Landsat/HRC images, due to the high reflectance of the Rainforest that is better represented in 

the CBERS HRC panchromatic band. Therefore, the overall results of Landsat/HRC are 

higher than the ones obtained for the Landsat/OLI images (Table 2.4), with satisfactory values 

related to the Eh. and ATWT methods. The other fusion algorithms have lower O.A. and 

kappa values with considerable deviation for Br. (Landsat/HRC) and IHS (Landsat/OLI) 

algorithms (Table 2.4). 

In Zambia region, a maximum of 8 and a minimum of 5 classes were specified and the 

ISODATA classification resulted in 6 classes for all images. The overall quality of the 

classified images is lower if compared to Amazon area, due to the complexity of the soil 

cover with a higher variety of image features. In Zambia the Landsat/OLI images resulted in 

better O.A. and kappa values. The reflectivity of bare soils and branches of herbaceous 
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vegetation is considerably higher in VIS (blue/green) OLI bands, which would result in good 

fused images for Landsat/OLI fusion due to the spectral range of the PAN OLI band  

(0.50-0.68 µm). In this region the better results were also obtained for the algorithms Eh. and 

ATWT, but the overall O.A. and kappa values are lower with a weak correlation to the 

reference classified image in both fused compositions (Landsat/HRC and Landsat/OLI). This 

behavior can be explained by the complexity of the soil cover with a higher variety of targets, 

if compared to Amazon region (see Figure 2.5).  

The results obtained by the indirect quantitative assessment have a significant 

difference between fusion methods with O.A. values ranging from 73% (Eh. in Amazon) to 

3% (Br. in Amazon). However, there is a great similarity between Landsat/HRC and 

Landsat/OLI fused compositions, with better results for Landsat/HRC images in vegetated 

areas (Amazon) and Landsat/OLI in regions of bare soils (Zambia). Thus, CEBERS/HRC 

panchromatic images can be applied to generate local and regional soil cover maps, through 

the fusion with MS Landsat OLI images. 

We observed that some fusion methods might causes a significant deviation from the 

arithmetic mean related to color saturation and introduction of chromatic distortions 

associated to some specific image targets. Therefore, a detailed spatial dependent evaluation 

(zonal approach) of the fusion quality is interesting to compare algorithms and to highlight 

where the fusion process returned better results. Besides, a zonal quantitative assessment 

gives us statistical parameters that allow the application of basic statistic or multivariate 

statistic in order to compare fusion methods. 

The zonal assessment of the fusion quality in Amazon and Zambia sites allowed us to 

the divide the resulting fused images into three groups: (1) satisfactory results obtained by Eh. 

and ATWT algorithms; (2) intermediary results for G.S., PC and DWT algorithms and (3) 

poor results for IHS and Br. algorithm in all evaluated fused images. However, we observed 

that the ATWT algorithm introduces more spatial information of the panchromatic band if 

compared to Eh. algorithm, which might causes a blurred effects in Eh. fused compositions. 

This aspect has to be considered when applying fusion techniques considering that Eh. 

algorithm might causes the loss of spatial information from the panchromatic band. 
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2.4.  Conclusions 

In this paper we evaluated the quality of fused MS compositions obtained according to 

different fusion techniques, through the assessment of their accuracies according to qualitative 

and quantitative approaches based on a zonal investigation.  By the proposed method we have 

identified how different images features are affected by the application of fusion algorithms, 

considering areas of Amazon Forest and Zambia Grasslands.  We observed that local 

distortions in fused bands might occur due to differences related to specific image targets, 

depending on the applied fusion algorithm. Thus, the numerical expression of the fusion 

accuracy by means of a global averaged value might leads to biased results, especially 

considering fusion methods that cause a high standard deviation between the reference and the 

fused MS images. Moreover, we were able to apply cluster grouping analysis based on the 

zonal quality indexes. 

The availability of optical satellite images provided by free in Latin America and 

Africa is essential in order to enhance regional and local maps in remote areas. The results 

presented in this research have shown that high-resolution HRC CBERS-4 image can be 

satisfactory applied in substitution of Landsat OLI panchromatic bands, by generating 

sharpened MS composition with a 5-m spatial resolution using ATWT and E.h fusion 

algorithms. CBERS-4 satellite will provide panchromatic images with a 5-m spatial resolution 

covering the VIS and NIR ranges of the electromagnetic spectrum that would be properly 

fused with VIS and IR bands of Landsat OLI sensor. 
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3. A multi-sensor approach for mapping plant-derived carbon storage in Amazonian 

Podzols2 

Abstract 

The Rio Negro basin is characterized by the extensive occurrence of Podzol-type soils that store large 

amounts of organic matter in deep thick spodic horizons, resulting in the storage of great amounts of 

soil organic carbon that can be mineralized and released to atmosphere with climate change. The 

quantification of this carbon requires determination of Podzol types and their spatial distribution. 

Remote sensing techniques would be helpful in indirect spatializing and segmentation of soil groups in 

Amazon Podzols. Here we associated remote-sensing images (Shuttle Radar Topographic Mission 

(SRTM), Operational Land Imager sensor/Landsat 8, and Thermal Infrared Sensor/Landsat 8) and field 

sample data in order to achieve carbon stock mapping. We found that a multi-sensor approach was 

critical for a proper segmentation of vegetation groups and spatial distribution of areas with different 

hydrologic soil regimes. 

Keywords: Landsat 8, Deep-SOC stock, Podzols, Remote Sensing 

3.1. Introduction 

The Amazon region is in urgent need of detailed soil mapping covering hitherto 

relatively undiscovered remote areas, such as those located in the high Rio Negro basin. 

These areas were mapped between 1970 and 1985 within the framework of the 

RADAMBRASIL project, the first effort aimed at mapping the whole Brazilian Amazon 

region, through a combination of aerial Synthetic Aperture Radar (SAR) imagery and scarce 

soil and rock field controls. The resulting maps were published at a scale of 1:1,000,000 and 

covered the whole Brazilian Amazon forest area. In 2008, the Brazilian Institute of 

Geography and Statistics (IBGE) provided a new soil mapping of the Amazon region at a 

scale of 1:250,000 (IBGE, 2008). The RADAMBRASIL data were refined using Landsat 

imagery and new field data. Although these maps represented a major advance when 

compared with the RADAMBRASIL maps, they are restricted by a low level of detail, 

insufficient with regard to requirements related to soil and forest protection and management 

purposes. 

The Rio Negro basin is located in the northwestern part of the central Amazon plain. It 

mainly consists of an extensive, low-altitude peneplain, some 10–20 m above average river 

levels (60–90 m above sea level) with scarce relictual inselbergs and mesas. Elementary 

landscape units are mainly flat plateaux with dispersed and ramified depressions in their 

centre and, at the edge of the plateaux and in more dissected areas, flat-top to convex hills. 
                                                           
2 Paper published in the International Journal of Remote Sensing (DOI: 10.1080/01431161.2015.1034896). 

Authors : O. J. R. Pereira, C. R. Montes, Y. Lucas, R. C. Santin, A. J. Melfi 
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Narrow alluvial terraces are observed in major river corridors. Soils in the dissected, better-

drained areas are Ferralsols and Acrisols while the plateaux are occupied by Gleyic 

Plinthosols and hydromorphic Podzols (BRASIL, 1977; DUBROEUCQ; VOLKOFF, 1998; 

NASCIMENTO et al., 2004). Such soil diversity reflects on the physiognomy and spectral 

signatures of the vegetation that grades from typical evergreen forest (high rainforest) to 

forest with a higher density of smaller trees (campinarana) and shrub savannah (campina). 

Maps from the RADAMBRASIL project (1972–1978) reveal such diversity and the close 

relationship between vegetation and soil types. 

Podzolization in Amazonia has been studied by several authors (LUCAS et al., 1984; 

DUBROEUCQ; VOLKOFF, 1998; DUBROEUCQ et al., 1999; NASCIMENTO et al., 2004; 

MONTES et al., 2007; BUENO, 2009), who have shown its importance as the main process 

of differentiation of Amazonian ecosystems. Podzols develop with time at the expense of 

clayey soils, constituting an endmember of soil evolution in such areas. The evolution of the 

soil systems in the Rio Negro basin is closely connected to the geomorphological pattern of 

the region. Red and yellow clayey Ferralsols and Acrisols are found at the edge of dissected 

low plateaux; by contrast, Podzols are found in poorly drained depressions in the central parts 

of the plateaux. In Podzols, the organic matter produced in the topsoil is transferred at depth 

through sandy eluviated horizons and accumulates at a depth varying from 1 m to more than 

10 m, forming thick horizons rich in organic matter, called spodic horizons (Bh). The 

resultant Podzols can store considerable amounts of carbon at depth and thus represent an 

important carbon pool at the global scale (MONTES et al., 2011). 

The complexity of tropical ecosystems, with their high diversity of plant species, 

decreases the accuracy level of the quantification of carbon stored in vegetation and soil. 

Therefore, some studies developed over recent decades have been searching for innovative 

techniques to spatialize carbon with the aid of multi-criterial analysis, which facilitates the 

correlation between environmental variables that can be inferred by remote-sensing 

techniques and the concentration of organic carbon stored in vegetation and soil. 

Most spatialization methods disregard the occurrence of soil organic carbon (SOC) 

stored at depths greater than 0.3 m. According to most studies conducted in the Amazon, the 

carbon stock in soils was estimated around 6–9.4 kg C m−2 considering the first 0.3 m of soil 

(BERNOUX et al., 2002), but recent research (MONTES et al., 2011) showed that in 

hydromorphic Podzols the carbon stock can exceed 66.7 kg C m−2 (0–5 m).  

Such values suggest that the carbon stored in hydromorphic Podzols might represent a 

significant part of the total organic carbon (TOC) stored in the Amazonian biome. Thus, the 
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carbon stored in thick spodic horizons should not be overlooked in studies that aim to 

estimate CO2 emissions in tropical regions while considering the scenario of global climate 

change. 

Taking into account the scarcity of studies that quantify and spatialize the TOC stored 

in Amazon Podzols, the present research aimed to propose association methods between 

biophysical variables derived from remote sensing imagery and field sample data to identify 

areas of Podzols under different hydrologic soil regimes. 

 

3.2. Methodology 

3.2.1. Study Area 

The study area was selected after interpretation of spectral vegetation signatures 

(Landsat/OLI) and with the aid of soil maps (IBGE, 2008). It covers an area of 71 km2 located 

north of Barcelos City, Amazon State, Brazil, at the central coordinates 0°15ʹ18ʺN and 

62°46ʹ36ʺW (Figure 3.1). The geological substratum is the sedimentary cover of the rivers 

Branco and Negro, with some younger depositional areas surrounding the Demeni river 

(Holocene alluvium of Demeni river; BRASIL, 1977). Three soil types developed in the area 

according to IBGE (2008): Ferralsols, Gleysols, and Podzols. 

The light green region on the multispectral composition (Figure 3.1) indicates the soil 

association Podzol/Ferralsol, while the darker green and reddish regions indicate Podzols at 

different stages of evolution (soil drainage conditions). Considering the difficulties involved 

in accessing the whole study area, a representative zone of soil lateral variability was selected 

for field investigations and further extrapolation. 
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Figure 3.1 -  Situation of the study area. The sampled area represents the region where the soil 

samples were collected. The map illustrates the extrapolation area (multi-sensor 

composition: Land Surface Temperature, SAVI, and NDMI – R, G, B, respectively). 

 

3.2.2. Field data 

Ten profiles representative of the three soil units were selected for detailed soil 

description and sampling. Several other observation points were also selected to determine the 

occurrence of Podzols. Observations and sampling were done by hand-auger drilling. Casing 

the auger holes with PVC tubes was necessary because of the collapse of the sandy material 

overlying the spodic horizons when digging or trading. TOC in samples was measured by the 

dry combustion technique using a Shimadzu TOC-5000 apparatus. 

3.2.3. Image data and processing methods 

Podzol mapping was achieved using remote sensing images from the Landsat 8 

(Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS)) and Shuttle Radar 

Topographic Mission (SRTM) digital elevation models (DEMs), provided by USGS (2014). 

The Landsat 8 cloud-free composition (path 233, row 60) was acquired on 25th January 2014 

at the central coordinates 63°1ʹ55.81ʺW; 0°3ʹ33.08ʺN. The Landsat bands and the SRTM 

image were registered by image-to-image registration, to the Landsat 7 ETM+ (Enhanced 

Thematic Mapper Plus) composition corrected and orthorectified (GLCF, 2009). For this 

composition the positional accuracy on the final image product always has a root mean square 
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error (RMSE) below 50 m. Given the foregoing, all the derived products were referenced 

according to the horizontal accuracy achieved based on the Landsat 7 ETM+ composition 

systematically corrected and orthorectified. After these procedures, the methods shown in 

Figure 3.2 were adopted. 

 

 

Figure 3.2 -  Flow chart showing the methodology employed in this work for generating the regional 

map of carbon stock. SAVI, soil adjusted vegetation index; NDMI, normalized difference 

moisture index. 

 

3.2.3.1. SAVI and NDMI indices 

The soil cover in the study area is a mixture of natural vegetated regions and bare soil, 

mostly white sand zones, with different moisture concentrations. The soil water content, the 

phytophysiognomy, and the soil type vary according to the topography and hydrologic soil 

regime. Such aspects can be mapped by remote sensing images: the products described below 

were generated from the atmospherically calibrated Landsat/OLI-TIRS bands and SRTM 

DEM. All derived products were generated taking into account the lateral variation in 

biophysical properties of soils and vegetation (e.g. topography, surface moisture, surface 

temperature, and vegetation density). 
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𝑆𝐴𝑉𝐼 =
(1 + 𝐿) +  (𝑁𝐼𝑅𝜌𝑠𝑢𝑟 − 𝑅𝜌𝑠𝑢𝑟)

(𝑁𝐼𝑅𝜌𝑠𝑢𝑟 + 𝑅𝜌𝑠𝑢𝑟 + 𝐿)
 Eq. 3.1 

Where 𝐿 (correction factor according to vegetation cover density) is set to 0.5, and 

𝑁𝐼𝑅𝜌𝑠𝑢𝑟 and 𝑅𝜌𝑠𝑢𝑟 are, respectively, the NIR and Red OLI bands atmospherically corrected. 

𝑁𝐷𝑀𝐼 =
𝑂𝐿𝐼 5 − 𝑂𝐿𝐼 6

𝑂𝐿𝐼 5 + 𝑂𝐿𝐼 6
 Eq. 3.2 

This index contrasts the NIR band (𝑂𝐿𝐼 5), which is sensitive to the reflectance of leaf 

chlorophyll content, to the mid-infrared band (𝑂𝐿𝐼 6), which is sensitive to the absorbance of 

leaf and soil moisture. 

3.2.3.2. Surface Temperature 

The thermal bands (TIRS/Landsat 8) 10 and 11 were calibrated to surface temperature 

as follows. The digital numbers (DNs) of the TIRS bands were converted to the top-of-

atmosphere (TOA) radiance from Equation 3.3. 

𝐿𝑇𝑂𝐴 = 𝑀 ∗ 𝐷𝑁 + 𝑏 Eq. 3.3 

Where 𝐿𝑇𝑂𝐴 is the cell value as radiance (Wm−2 sr−1 µm−1), DN is the digital number, 

M is the radiance multiplier (0.0003342), and b is the radiance add (0.1). The equation was 

applied for both thermal raw TIRS bands (10 and 11). 

After conversion of DN to TOA, the surface radiance was calculated using the 

Reference Channel Emissivity (RCE) method. According to this procedure, all the pixels of 

the thermal channel have a constant emissivity (ɛ) usually set to 0.95. According to another 

method described by Sobrino, Jimenez-Munoz and Paolini (2004), the emissivity may depend 

on the soil cover. It is thus necessary to consider three different cases: (1) bare ground, (2) 

fully vegetated, and (3) mixture of bare soil and vegetation. The third case was applied in this 

study, and hence Equation 3.4 was used to calculate the emissivity (Ɛv): 

Ɛv = 0.004 Pv + 0.986 Eq. 3.4 

Where Ɛv is the land surface emissivity (LSE); 0.986 is the standard emissivity value 

for vegetation and soils; 0.004 is the mean standard deviation value for the emissivity of soils 

included in the ASTER spectral library (http://asterweb.jpl.nasa.gov) and filtered according to 

the band TM6 (Landsat 5) filter function (SOBRINO; JIMENEZ-MUNOZ; PAOLINI, 2004) 

and Pv is the vegetation proportion obtained from Equation 3.5. 
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𝑃𝑣 = [ 
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
] Eq. 3.5 

Where 𝑁𝐷𝑉𝐼 (normalized difference vegetation index), ranging between −1 and +1, is 

calculated from Equation 3.6; 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 is 0.2 and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 is 0.5 for a mixture of bare soil 

and vegetation: 

     𝑁𝐷𝑉𝐼 = [ 
𝑂𝐿𝐼 5 − 𝑂𝐿𝐼 4

𝑂𝐿𝐼 5 + 𝑂𝐿𝐼 4
] Eq. 3.6 

Where 𝑂𝐿𝐼 4 and 𝑂𝐿𝐼 5 correspond to the red and infrared channels of the OLI sensor 

(Landsat 8), respectively. As indicated by Sobrino, Jimenez-Munoz and Paolini (2004), a 

more accurate measurement of NDVI can be obtained by the use of bands atmospherically 

calibrated. 

The final step involves the conversion of the radiance image to spectral emissivity 

obtained from Equation 3.3, according to the nature of the surface. For this purpose, the TIRS 

10 and 11 radiance bands were converted to TOA temperature by the Equation 3.7 (NASA, 

2009): 

             𝑇 =
𝐾2

ln (
𝐾1
𝐿ʎ

+ 1)
 

Eq. 3.7 

Where 𝐾1 is the calibration constant 1 (774.89 W m−2 ster−1 µm, for band 10 and 

480.89 W m−2 ster−1 µm for band 11); 𝐾2 is the calibration constant 2 (1321.08 for band 10 

and 1201.14 for band 11); and 𝐿ʎ is the at-sensor radiance calculated from Equation 3.3. After 

this conversion, the surface temperature images were generated from Equation 3.8 (WENG; 

LU; SCHUBRING, 2004): 

𝑆𝑡 =  
𝑇𝐵

1 +  (ʎ [𝑇𝐵 𝜌⁄ ]) 𝑙𝑛𝜀
 Eq. 3.8 

Where 𝑇𝐵 is the blackbody temperature from Equation 3.7; ʎ is the wavelength of 

emitted radiance (band 10: 10.89 µm; band 11: 12.15 µm); 𝜌 is the multiplication of the 

Boltzmann constant by Planck’s constant divided by the velocity of light – 0.01438; and 𝑙𝑛𝜀 is 

the land surface emissivity (Ɛv) calculated from Equation 3.4. The resulting images from 

Equation 3.6 are given in kelvin.  
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3.2.3.3. SRTM-filled DEM 

The main purpose of this procedure was to create a SRTM DEM free of sinks, which 

simplifies interpretation of the drainage pattern and the identification of the 

different topographic gradients in the study area. It is therefore necessary to identify the sinks 

and to compare with the DEM to determine whether they have to be eliminated. Given this, a 

depression-less SRTM DEM was created and the result was used to fill the original DEM. 

The study area is a flat zone covered by rainforest with strongly dissected residual hills 

and poorly drained depressions at the central parts of the Podzol plateaux. Because the SRTM 

DEM was acquired by SAR sensors on the X band, which has a low capacity for penetration 

in the upper tree canopy, it is sensitive to the texture of the vegetation canopy. Thus, the main 

purpose of the applied method was to remove the small sinks associated with textural 

variation in the tree canopies. 

The generation of drainage flow direction allowed the estimation of the sinks used to 

determine the fill limit. After sink identification, their central areas were used to estimate the 

pour points, allowing the generation of each sink watershed. Untimely, the minimum 

elevation in each sink watershed was calculated to estimate the average fill limit. The 

resulting image is a DEM of 30 m spatial resolution (1 arc second data set: SRTM GL1 

provided by USGS, 2014). 

3.2.3.4. Image classification and generation of soil maps 

This study attempted to classify the objects into seven regions of interest (ROIs) 

according to the soil cover associated with the vegetation, surface temperature, surface 

moisture, and topography: (1) Ferralsol–Podzol association covered by high, dense rainforest 

(HRF); (2) poorly drained Podzols associated with campinarana forest; (3) depositional zones 

(alluvial Gleysols covered by dense forest and hygrophilous vegetation); (4) incised plains 

and depressions with seasonally flooded Podzols; (5) overflooded Podzols covered by 

herbaceous vegetation; (6) regions of water bodies and permanent flooded areas; and (7) 

sandbanks and bare soils.  

The ROIs were identified in the study area from field observations, regional maps 

(IBGE, 2008), visual interpretation of the spectral signature of the targets (Landsat 8 

multispectral composition), and visual interpretation of IKONOS II mosaics in specific zones 

(where cloud-free scenes were available). The classification of the multi-sensor composition 

was carried out using the Support Vector Machine (SVM) technique, according to the seven 

ROIs described above. 
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A SVM algorithm separated the different ROIs by a hyperplane (VAPNIK, 1998). The 

points lying on the boundaries were the support vectors and the middle of the margin was the 

optimal separating hyperplane. An optimum hyperplane was determined using a training data 

set (ROI), and its generalization ability was verified using a validation data set (field-truth). 

The study used a polynomial kernel and employed a ‘one-against-one’ technique to allow the 

multi-class classification. The SVM algorithm was implemented in ENVI® software (ITT, 

2009). 

Classified images using the SVM classifier were generated for both multi-sensor 

composition (NDMI, SAVI, land surface temperature, and filled SRTM) and multispectral 

OLI composition for statistical comparison. Besides, the SVM classifier was applied for both 

compositions according to the ISODATA unsupervised classification procedure in order to 

verify the quality of the multi-sensor composition in comparison to multispectral data of OLI 

Landsat bands. This procedure does not require human intervention that potentially biases 

classification and determines the differentiability among spectral classes, giving a better 

comparison parameter. 

Considering that ISODATA is a fully automated method, there is no possibility of 

interference with the designation of the classes and thus the validation of the classified images 

was done by comparison between the automatically generated classes and the field-truth 

established for the study areas. 

3.2.4. Soil map and correlation with field sample data 

For each individual profile, the organic carbon stock was estimated by the following 

equation: 

𝑆𝑂𝐶𝑠 =  ∑ 𝐵𝑖

𝑛

𝑖=1

𝐶𝑖  𝐷𝑖 Eq. 3.9 

 

Where SOCs is the SOC stock (kg C m−2); Bi is the soil bulk density (mg m−3) of layer 

i; Ci is the proportion of organic carbon (g C g−1) in layer i; and Di is the thickness (m) of 

layer i. The average soil density for Podzol horizons (Dbi) was calculated from surveys 

previously carried out in the Amazon region by Du Gardin, Grimaldi and Lucas (2002) and 

Montes et al. (2011), and directly determined by the Kopeck ring method, with a 70.49 cm3 

cylinder (3.8 cm height and 4.86 cm diameter). The SOC for each soil map unit was then 

estimated according to its corresponding area in the study site, and then extrapolated at the 

regional scale. 
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Soil mapping and segmenting at the regional scale was achieved using products 

derived from the Landsat sensors and related to the soil cover: biophysical properties of the 

vegetation and soils (SAVI/NDMI indices), thermal behavior of the soil surface (temperature 

images), and surface texture derived from the filled SRTM DEM for segmentation of 

topographic gradients. The resulting images were applied to estimate the regional behavior of 

the biophysical characteristics related to soil type. 

 

3.3. Results and Discussion 

3.3.1. Vegetation and topographic features related to lateral variation in podzols 

According to field observations, changes in soil cover occur abruptly in accordance 

with soil type. Given this, we identified three major soil domains related to Podzols. 

The first group is dominant in the landscape, and consists of seasonally flooded and 

overflooded Podzols. The vegetation is strongly correlated with the topography, with 

herbaceous campina in depressed flooded areas and scrubland in adjacent plateaux and, in 

some regions, patches of bare white sand where grasses and lichens grow according to 

variations in soil surface moisture. According to both IBGE (2008) and field observations, 

bare white sand patches can be considered as Gleysols or Podzols with low SOM content in 

topsoil horizons due to occasional dryness of topsoil material. 

The second soil group belongs to the Rio Branco geomorphological domain, with 

poorly drained Podzols. According to IBGE (2008), this area is dominated by tabular hills 

with vast flat interzones. Field surveys, however, have shown that this domain is a flat 

landform whose elevation ranges from 50 to 60 m above sea level and covered by 

campinaranam with scattered HRF patches related to better-drained Podzols. Therefore, the 

phytophysiognomies comprise an ecotone. Ferralsols were not observed in this group. The 

third soil group comprises well-drained Podzols and Ferralsols covered by HRF. This area is 

characterized by a slight inclination towards the drainage network. Ferralsols may occur 

punctually in scattered hills 2–10 m above flat, sandy inter-hill surfaces. 

The segmentation of the three major groups mentioned above was carried out by a 

clustering group analysis, considering a Delaunay triangulated relationship between  

1000 random samples for the following images: SAVI, relief (SRTM), NDMI, and land 

surface temperature (arithmetic mean of approximately 186 pixels for each sample). 

Temperature and SAVI demonstrated an inverse polynomial relationship (Figure 3.3a); the 
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correlation between relief and SAVI is better illustrated by a third-order polynomial 

regression (Figure 3.3b) and by a linear relationship for the variables NDMI and SAVI 

(Figure 3.3c). 

The inverse correlation between LST and vegetation density (SAVI) indicates that the 

areas with the highest vegetation indices (HRF from Group 3 and campinarana from Group 2) 

also have the lower canopy temperatures, which is consistent with their location on hills and 

tabular tops. Group 2 has a spectral behavior similar to Group 3, although it may be found in 

low lands as a sclerophyllous campinarana with slightly higher canopy temperatures. Group 1 

has a wide range of temperature, moisture indices, and vegetation indices, which is consistent 

with the variety of soil cover and the high surface temperatures that can occur in herbaceous 

or bare sand areas under drier conditions. 

 
Figure 3.3 -  Scatterplot showing the relation between soil adjusted vegetation index (SAVI) and the 

following variables: (a) land surface temperature (LST); (b) altitude; and (c) normalized 

difference moisture index (NDMI). (d) Projection of the normalized factor coordinates of 

variables (biophy-sical variables) in the 1 × 2 factor plane obtained by principal 

component analysis. Group 1: seasonally flooded and overflooded Podzols. Group 2: 

poorly drained Podzols. Group 3: well-drained Podzols and Ferralsols. 
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Taking into account the principal component analysis of the remote sensing variables, 

the first principal component (factor 1) accounted for a variance of 84.9% and the second of 

7.2%, which corroborates the assumption of a gradual lateral variation in biophysical 

parameters, from regions of HRF to zones with bare soils and grasses. We observed that this 

pattern is properly modeled by a general approach involving the study area at the regional 

scale. However, smaller variations associated with each group must be explained by local 

models within each cluster group. 

According to the distribution of the clusters, Group 1 corresponds to extensive Podzols 

areas located in depressed regions. Both field surveys and remote-sensing images have shown 

that the surface moisture in such areas can vary laterally according to the topography and 

vegetation cover (Figure 3.3). The differences in relief were not detectable in the SRTM 

images considering that the larger height differences are around 1.5–2 m. Such height 

differences, however, are not negligible in the context of Podzol lateral differentiation: the 

wettest areas allow humic topsoil horizons that are absent in drier areas. 

It is important to highlight that lateral variations in the soil mantle in Group 1 are not 

abrupt like in other areas (Groups 2 and 3). As observed in the field, all intermediaries exist 

between soils with low SOM content in the topsoil (bare white sand) and those with a high-

SOM topsoil horizon (O horizon). This has to be considered for segmentation and to estimate 

the soil carbon stock in different environments. 

3.3.2. Classification of soil cover and generation of regional soil map 

The land cover/soil thematic maps were produced from the multi-sensor (OLI/TIRS/ 

SRTM) and OLI multispectral composition according to the SVM classification. The same 

method, based on ROIs selected for the same known targets (field-truth), was applied to the 

Landsat OLI multispectral composition (Green, Red, Near Infrared, SWIR 1, and SWIR 2 

bands). The ISODATA classifier was applied to both multi-sensor and OLI multispectral 

compositions (the ISODATA clustering method was used simply for comparison between 

compositions). The accuracy assessment was then based on the computation of the overall 

accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and kappa coefficient (Kc) 

(CONGALTON; GREEN, 1999), in order to evaluate and compare compositions adopting 

field surveys as ground truth. 
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The overall indices of the ISODATA classification were 53.0% and 63.9% for the OLI 

multispectral composition and the multi-sensor composition, respectively. Given this, and 

taking into account an optimized unsupervised classification with identical parameters for 

both compositions, we observed that the classifications were similar. The multi-sensor 

composition, however, gave results closer to the reality (ROI) with a better Kc when 

compared with the OLI composition (0.52 versus 0.45), and better PA and UA for most 

classes (Table 3.1). 

Both compositions were able to segment the three major clustering groups and the 

variations within each group, but returned high levels of omitted targets for those classes that 

were correlated to similar targets (Table 3.1). The unsupervised classification of the OLI 

multispectral composition has areas of seasonally flooded podzols (Class 4) associated with 

other targets having closer spectral behaviour, such as regions of overflooded podzol (Class 5) 

and depositional zones (Class 3). With regard to the multi-sensor composition, we observed a 

higher level of confusion related to Classes 2 and 3 due to their close spectral similarity. 

ISODATA clustering was helpful in an unbiased comparison between the two compositions. 

However, better results were achieved through the application of supervised classification 

algorithms (Figure 3.4). 

 

Table 3.1 - Producer and user’s accuracy (PA and UA, respectively) for ISODATA clustering 

according to the field-truth (ROI). The classes of water bodies and bare soils are not shown. 

 
Multisensor Composition OLI Composition 

Classesa PA (%) UA (%) PA (%) UA (%) 

Class 1 99.90 47.41 94.11 94.47 

Class 2 36.00 90.78 86.50 65.74 

Class 3 28.12 16.70 19.54 15.12 

Class 4 95.48 86.09 0.06 0.10 

Class 5 90.09 95.23 73.03 95.14 
aClass 1: Ferralsol/Podzol association covered by HRF (High Dense Rainforest); Class 2: Poorly-drained 

Podzols associated to Campinarana Forest; Class 3: depositional zones (alluvial Gleysols covered by dense forest 

and hygrophilous vegetation); Class 4: incised plains and depressions with seasonally flooded Podzols; Class 5: 

overflooded Podzols covered by herbaceous vegetation. 
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Figure 3.4 -  Producer’s and user’s accuracies for the SVM classification of multi-sensor and OLI 

Landsat 8 compositions. The designation of each class is shown in  Table 3.1. 

All of the classes in Figure 3.4 have a PA above 98% for the multi-sensor 

composition. Such values were achieved according to ground truth observed in field surveys 

and regional soil maps (IBGE, 2008) and thus the classifications might be biased, which must 

be considered in final maps of soil carbon stock. It is important to highlight the enhanced 

efficiency of the multi-sensor composition when compared with the OLI multi-spectral 

composition using the same ROI for both images (Figure 3.4). 

To access an optimum SVM classification algorithm, a range of kernel types, penalty 

parameters, pyramid levels, and classification probability thresholds was tested until reaching 

the value closest to the ground truth (SHAFRI; RAMLE, 2009). The best result was obtained 

through a radial basis kernel with a penalty parameter of 100, a pyramid level of 2, and a 

probability threshold of 0. The OA of such classification was 99.65% with a Kc of 0.99. For 

the SVM classification of the OLI multispectral composition, obtained OA and Kc were 

96.87% and 0.96, respectively. 
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Table 3.2 - Confusion matrix of the multisensor classified image, representing the classes’ similarity. 
  Ground Truth ROI (%) 

 Classesa Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

C
la

ss
if

ie
d

 (
S

V
M

) 

Class 1 99.8 0.0 0.3 0.0 0.0 0.0 0.0 

Class 2 
 

99.7 0.3 0.0 0.0 0.0 0.1 

Class 3  
 

99.5 0.0 0.0 0.0 0.0 

Class 4    99.0 0.0 1.0 0.0 

Class 5    
 

98.0 0.0 1.0 

Class 6      99.0 0.0 

Class 7       99.0 
aClass 1: Ferralsol/Podzol association covered by HRF; Class 2: Poorly-drained Podzols associated to 

Campinarana Forest; Class 3: depositional zones (alluvial Gleysols covered by dense forest and hygrophilous 

vegetation); Class 4: incised plains and depressions with seasonally flooded Podzols; Class 5: overflooded 

Podzols covered by herbaceous vegetation; Class 6: bare soils; Class 7: water. 

The SVM algorithm returned refined results when compared with the ground truth 

(Table 3.2), with all classes having a similarity above 98%. However, the ground truth data 

may be biased due to difficulty in processing detailed field surveys and the low spatial scale 

of the reference soil map (1:250,000). A detailed visual inspection over the classified image 

was thus carried out to verify errors and occurrences of incorrect classification. Errors were 

corrected by changing the pixel values of the original GRID. The regional soil map was then 

elaborated on the basis of the classified image, with a nominal spatial resolution of 30-m. 

3.3.3. Mapping the deep-SOC stock in Podzol regions 

Our studies have shown that topsoil and deep SOM-rich Podzol horizons can vary 

laterally in both thickness and carbon content, which means that the carbon stored in Podzols 

is sensitive to local environmental variables such as soil moisture, topography, hydrological 

regime, geologic substratum, and vegetation cover, as well as regional variables such as 

temperature and rainfall. The most refined maps available for this region (IBGE, 2008) do not 

consider local variables as relevant factors in regard to the lateral distribution of Podzols. The 

local environmental variables are considered hereafter to allow correlation between soil 

carbon stocks and biophysical features. 

The lateral and vertical variation in carbon content in Podzol profiles is related to the 

relief and the local hydrologic regime. The first area we investigated was designated as a HRF 

over Podzols and Ferralsols. Detailed study of a range of profiles gave a good approximation 

of the average carbon stock in this domain (Figures 3.5 and  3.6). The better-drained areas 

(HRF over low-hill Ferralsols and well-drained Podzols) have a large amount of carbon in the 

first few centimeters of soil (O and A horizons). Deep Bh (depth 1.5–4.5 m) was observed but 

with a low content of organic carbon (Figure 3.5). At the transition between this area and the 
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poorly drained podzol region, the deep SOM-rich layers increase and show a higher content of 

carbon. The third main area comprises extensive regions of overflooded Podzols where the 

occurrence of Bh was observed. 

 
Figure 3.5 - Average carbon stock for the three main Podzol groups described in the study area. 

The final group consists of herbaceous and flooded areas. The presence of Podzols in 

such areas was disregarded in previous studies (BATJES; DIJKSHOORN, 1999; BERNOUX 

et al., 2002; CERRI et al., 2007; SAATCHI et al., 2007). The topsoil horizons comprise high 

SOM content. Podzols with bare topsoil store some carbon in their deep Bh, although in 

smaller quantities than more vegetated Podzols, probably because of low production in the 

topsoil horizons of humic substances likely to accumulate in deep Bh. The high level of 

moisture in such areas allows the accumulation of a considerable amount of SOC in the 

topsoil. In this domain we observed that topsoil (first 5 cm) may store more than 200 t C ha−1 

(Figure 3.5). 

From vegetated Podzol areas to bare soil, the amount of carbon stored decreases 

gradually, until the zones of open sandy fields. According to Stropp et al. (2011), white sand 

fields have a sparse distribution over the region of the Rio Negro basin. In the study area, 

however, these zones follow an insular pattern with highly weathered bare soils in the 

depressed centre surrounded by SOC-rich Podzols on flat areas, then Ferralsols at the slightly 

incised, low-hill borders. Similar patterns were previously observed in other Podzol areas 

(BOULET et al., 1997; NASCIMENTO et al., 2004; MONTES et al., 2007; 2011). These 

authors pointed out that the lateral organization of the Ferralsol/Podzol soil system indicates 

its stage of evolution, which is important in estimating carbon stock. 

The average carbon stock for each soil group was estimated taking into account the 

clustering analysis and the soil map derived from the multi-sensor image composition (Figure 
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3.6). The greatest amount of carbon stored in depth horizons was found in the poorly drained 

Podzol areas, the lowest in Podzols/Ferralsols, and intermediate amounts in flooded Podzols 

(Table 3.3). 

Table 3.3 - Average Carbon Stock for Podzols. 

Soil Groups 
 0 to 0.50 m  0.50 to 4 m 

Carbon (ton ha-1) Carbon (ton ha-1) 

Poorly-drained Podzolsa 62.80 ±10.03 477.75±63.9 

Flooded Podzolsb 249.12±18.83 161.22±45.35 

Podzols/Ferralsols association 84.35±12.4 188.77±38.5 
aIt was considered the average thickness observed in filed for surface and depth horizons, according to the soil 

types. bThis class comprises the soil units seasonally flooded Podzols and overflooded Podzols. 

The areas of alluvial Gleysols and Ferralsols have a small amount of carbon stored in 

horizons below 0.50 m soil depth, mostly located in the first few centimetres in the organic 

layer according to our investigations and values provided by IBGE (2008) for soil samples 

collected in areas of Ferralsols and alluvial Gleysols (0–0.5 m: 70.9 ± 27 t C ha−1 for 

Ferralsols and 89.9 ± 35.4 t C ha−1 for Gleysols; below 0.5 m: 31.5 ± 10.7 t C ha−1 for 

Ferralsols and 25.8 ± 8.5 t C ha−1 for Gleysols). In flooded Podzols we observed a large 

amount of carbon stored as poorly decomposed organic matter on the surface (Table 3.3), due 

the low microbial activity in this domain. These zones are strongly related to wetlands 

covered by grasses and scrubs. Finally, we did not identify a significant amount of carbon 

stored in areas of bare soil. The range of the soil units and their carbon stock are shown in 

Table 3.4. 

Table 3.4 - Total carbon stock according to each soil unit. The stock is represented in Teragram (1012 

grams) and the area in hectares. 

Classa C Stock (Tg) Area (ha) Area (%)b C Stock (%) 

Class 1 17.9±6.4 6.47 104 26.8 21.7 

Class 2 16.1±2.5 3.07 104 12.8 19.6 

Class 3 4.0±0.4 2.81 104 11.7 5.0 

Class 4 21.8±5.7 7.88 104 32.7 26.5 

Class 5 9.7±0.7 3.19 104 13.2 11.8 

Class 6 - 3.70 103 1.6 - 

Class 7 - 3.17 103 1.3 - 
aThe designation of each class is shown in Table 3.2. bThe percentage values indicate the scope of each unit, 

relative to the total area and carbon stock. 
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Previous carbon stock maps for these regions (BERNOUX et al., 2002) estimated that 

Podzol areas store about 275 t C ha−1 (0–1 m soil thickness), which is lower than our 

estimation of 415 t C ha−1 as average carbon stock in the Podzol areas (0–4 m soil thickness) 

when we take into account the deep SOM-rich Podzol horizons. 

The most detailed map available for this area (IBGE, 2008) shows generalized classes 

of Podzols, Ferralsols, and alluvial Gleysols (IBGE limits are also reported in  Figure 3.6). 

The subunits within each soil unit are not designated due to the low level of detail in the soil 

map. The definition of soil units, according to surveys carried out in previous studies (IBGE, 

2008), was based on a small number of soil samples. Extrapolation was performed by 

interpretation of topography (SAR) and the spectral behavior of vegetation (passive remote-

sensing systems). The lack of soil samples and the absence of detailed biophysical data are the 

main reasons for the misclassification of some soil units. As an example, some 

Ferralsol/Podzol associations represented on  Figure 3.6 were defined by IBGE (2008) as 

Ferralsols. According to our observations, Ferralsols in these areas occur as scattered, well-

drained hills that can only be mapped at a local scale. 
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Figure 3.6 -  Soil map illustrating the spatial distribution of the soil types. The numbers for the soil 

units represent the cluster groups described in Figure 3.3. 

Taking into account the carbon soil contents defined in this study and using the IBGE 

(2008) soil delimitation, the calculation of soil carbon stored in the study area yields 0.65 Pg 

when using the IBGE (2008) soil delimitations and 0.81 Pg when using the soil map derived 

from the multi-sensor image composition. Such a discrepancy highlights the need for 

mapping the high Rio Negro basin at a regional scale, allowing for a more accurate estimation 

of the carbon stored in soils. The correct estimation of SOC stock at a regional scale in such a 
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complex environment depends on both the availability of soil samples suitable to represent 

both the lateral and vertical variability of the soil units and the association with biophysical 

parameters inferred by remote sensing data. 

3.4. Conclusions 

A multi-sensor approach proved crucial to mapping the soil carbon stock at the 

regional scale in regions of hydromorphic soils in the high Rio Negro basin characterized by 

wide lateral and vertical variability in carbon stock. The quantity of carbon stored in soils is 

related to environmental aspects such as topography, vegetation type, and soil surface 

moisture, which can be indirectly inferred by remote sensing images through a range of data 

sets collected by various sensor systems and orbital satellite platforms. The combination of 

these data sets allowed a better understanding of the aspects related to soil variability, when 

combined with field sample data. 

According to our study, Podzols from depressed overflooded and poorly drained areas 

of sclerophyllic vegetation store considerable amounts of carbon in deep horizons that can 

range from 2 m to more than 10 m. Pre-existing maps have only a low level of detail, and 

field-truth was based on scarce soil observations. Moreover, the soil profiles used in previous 

field surveys are limited to depths of no more than 1 m, which is inadequate to investigate the 

level of SOC stored in Podzol’s Bh horizons. 
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4. Evaluation of pedotransfer equations to predict deep soil carbon stock in tropical 

Podzols compared to other soils of Brazilian Amazon forest3 

 

Abstract 

According to the soil measurement procedures proposed by the Intergovernmental Panel on Climate 

Change (IPCC), the sampling depth for SOC stock estimation is centered on the upper soil horizons 

where root biomass and organic matter inputs are concentrated, depending on soil type and ecosystem, 

typically between 0 and 0.3 m. However, recent research in areas of Amazon Podzols has shown that 

these soils store a great amount of carbon in thick spodic horizons (Bh). The amount of carbon stored 

in deep Bh horizons of Podzols (down to 3 m) may exceed 80 kg C m-2 in some regions of the 

Amazon. Thus, a better understanding of the vertical distribution of the SOC in Amazon soils is an 

urgent matter considering the volume of carbon stored in Podzols. Given this, the main goal of this 

research was to test and to propose pedotrasfer functions based on collection of Amazon soil profiles 

in order to estimate SOC stock and evaluate different soil attributes that could be used to infer 

indirectly, soil bulk density. For this propose, we selected around 320 pedons that were collected in 

the region of the Rio Negro basin, to model the vertical distribution of SOC stock using a series of 

negative exponential profile depth functions and parametric/non-parametric functions for Podzols. The 

derived function parameters were used to predict carbon stock in deep horizons for all studied profiles 

and to explain the vertical behavior of the SOC stock in Podzol profiles. The soil bulk density of 

Amazon soils was properly modeled by symbolic regression, considering pH, clay content and SOC as 

the most relevant variables likely to affect soil bulk density values. We observed that the SOC stored 

in deep horizons of non-Podzol soils can be modeled by exponential decay equations. However, in 

Podzol, the vertical distribution of carbon stock is highly complex with a significant increase in deep 

horizons, which cannot be explained by negative exponential functions. According to our research, the 

SOC stock of Amazon soils excluding Podzols, can be predicted by fitted exponential functions 

(RMSE: 0.9 kg C m-2). However, the vertical variation of SOC stored in Podzol profiles can be 

modeled just by complex equations (equal-area spline RMSE: 13.6 kg C m-2; Fourier RMSE 15.9 kg C 

m-2 and Sum of Sines RMSE: 15.0 kg C m-2) with a larger number of parameters. According to the 

results achieved in this research we concluded that the SOC stock of Podzols can be indirectly 

estimated for the whole soil profile by integrating the Sum of Sines and Fourier equations, which is 

not possible when applying an equal-area spline fitting due to the absence of model parameters. 

Moreover, spodic horizons store most of the carbon pool of Podzols areas and have more than twice of 

the capability of storing carbon when compared to other Amazon soils.  

  

Keywords: Soil Organic Carbon Stock, Podzols, Amazon Forest, Pedotransfer Equations  

 

 

 

 

                                                           
3 This paper will be published as a chapter of the book “Digital Soil Morphometrics” (SPRINGS. Series: 

Progress in Soil Science) in November, 2015. Authors: O. J. R. Pereira, C. R. Montes, Y. Lucas, A. J. Melfi 
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4.1. Introduction 

The Brazilian tropical Podzols cover 1.36 105 km² of the Amazon forest, which 

represents 2.7% of the total area of the Amazon biome and around 20% of the soils of the Rio 

Negro Basin. The other important soil group in this region comprises ferralitic soils (Acrisols 

and Ferralsols) that cover 55% of the Rio Negro basin. The remaining soil groups are related 

to alluvial and litholic soils as well as scattered hydromorphic Plinthosols. Such diversity of 

soil types reflects on the capacity of the Amazonian biome on storing soil organic carbon 

(SOC), especially in regions of Podzols. According to recent research, the Amazon Podzols 

(MONTES et al., 2011) store about 13.6±1.1 PgC, which is at least 12.3 PgC higher than 

previous estimates (BERNOUX et al., 2002; BATJES; DIJKSHOORN, 1999) that have 

considered soil depths up to 0.3m. 

Several surveys have investigated the capability of soils to store and retain SOC 

(POST et al., 1982; BURINGH, 1984; KIMBLE, 1990; ESWARAN et al., 1993; BATJES, 

1996), but present researches usually consider a fixed soil depth, typically based on the 

topsoil 0.2 or 0.3 m, where the highest SOC concentrations usually occur (BURKE et al., 

1989). Batjes (1996) reported a 60% increase in the global SOC pool when the second meter 

of soil was included, taking into account the FAO (2012) soil classification system. A few 

studies of the Amazon forest (MONTES et al., 2011; PEREIRA et al., 2015) have described 

the capability of Podzols in storing high amounts of C in deep spodic (Bh) horizons. Theses 

soils have an average stock of 70 kg C m-2 and around 80.9% of its C is stored in thick deep 

Bh horizons in depths ranging from 2 to more than 5m (MONTES et al., 2011; PEREIRA et 

al., 2015).  

The vertical pattern of SOC content in Podzols is highly complex when compared to 

other Amazon soils, with a significant increase in thick Bh horizons (MONTES et al., 2011). 

Negative exponential depth function has been successfully applied in several mineral soils to 

model and predict C stock. However, any local variation affects the quality of the exponential 

fit everywhere else in the soil profile, as observed by Webster (1978). In this context, the 

modelling of Podzols SOC stock can be carried out by non-parametric depth function (eg.: 

equal-area spline) that can result in satisfactory adjustment, but with the disadvantage of not 

providing any parameters that would allow model generalizations (BISHOP et al., 1999). The 

summarization of the model by parameters is essential to allow an indirect estimation of the 

SOC in Podzols and to explain the behaviour of C along the soil profile, by means of a 

general approach.  
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Traditionally, the amount of C stored in soil is obtained as C mass per unit area 

according to a specific profile depth (Tp). The calculation is carried out by summing the C 

stock (kg C m-2) of the measured soil layers (1, 2, ... , 𝑁). Thus, the content of C to a given 

soil profile can be obtained by the following equation:  

Where 𝐶𝑠 is the carbon stock (kg C m-2) to a given profile; 𝐶 is the carbon content in 

mass basis (kg C kg-1); 𝜌𝑝 is the soil bulk density (g cm-3); and 𝑇𝑝 is the layer thickness. 

Another option to obtain the 𝐶𝑠 value is through the application of a profile depth function 

fitted to the soil C data in a volumetric basis (kg C m-3) according to specific measured soil 

layers (𝑇𝑝). The integration of the function is applied in order to obtain the SOC stock (kg C 

m-2) for the whole profile. The expression of C content as depth function is useful to estimate 

the C stock down to certain depths and to standardize databases where soil depths are sampled 

to layers randomly distributed (ARROUAYS; P’ELISSIER, 1994; MINASNY et al., 2006).  

Parametric pedotransfer functions (PTF) are widely used in soil science to predict 

several soil attributes based on empirical equations that result in function parameters that can 

be easily applied to measure soil attributes (McBRATNEY et al., 2002). Given this, the main 

goal of this research was to test and to propose PTF functions in several Amazon soil profiles 

(IBGE, 2008; EMBRAPA, 2014) in order to estimate SOC stock (𝐶𝑠) and evaluate different 

soil attributes that could be used to infer indirectly, soil bulk density (𝜌𝑝).  

4.2. Methodology 

The methods adopted in this research are divided in two general steps. The indirect 

estimation of soil bulk density by evaluation of traditional PTF functions (BERNOUX et al., 

1998; TOMASELLA; HODNETT, 1998; BENITES et al., 2007), compared to the ones 

developed in the frame of this research.  The second step was focused on the estimation of 

SOC stock by the application of curve fitting models based on different approaches, taking 

into account the behaviour of SOC along the soil profiles of Podzols and other Amazon soils.  

4.2.1. Field Sample Data 

 The studied area is located in the Amazonia State/Brazil (Figure 4.1). The soil 

database used in this study was provided by IBGE (2008) and Embrapa (2014) as well as 

collected in filed surveys developed by this research (Figure 4.1).  

𝐶𝑠 =  ∑(𝐶 ∗ 𝜌𝑝) ∗ 𝑇𝑝

𝑁

𝑝=1

 Eq. 4.1 
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Figure 4.1 -  Situation of the studied area highlighting the location of the soil sample profiles used in 

this study.  

 

The soil profiles in Figure 4.1 are divided in three groups. The “Podzol Sample Areas” 

that represent the profiles collected by this study in regions of equatorial Podzols of the Rio 

Negro basin (393 sampled layers in 18 profiles). The “soil bulk density PTF” profiles (Figure 

4.1) refer to the soil profiles provided by Embrapa (2014), which were used to develop the 

soil bulk density PTF functions (668 sampled layers in 129 profiles). Due to the scarcity of 

samples in Rio Negro basin, we decided to use soil profiles in the entire Amazonia state to 

validate the bulk density PFT functions. The SOC stock was estimated in profiles limited to 

the region of the Rio Negro basin based on database provided by IBGE (2008), illustrated in 

Figure 4.1 by the “SOC PTF” group (1442 sampled layers in 324 profiles).   

4.2.1.1. EMBRAPA Soil Database 

All samples provided by Embrapa contain values of soil pH (water and KCl); organic 

carbon by dichromate method (SOC); total nitrogen by Kjeldahl digestion; iron oxide (Fe2O3), 

titanium oxide (TiO2); aluminium oxide (Al2O3), and silicon oxide (SiO2) by strong acid 

digestion; exchangeable cations (Ca2+, Mg2+, Al3+) by 1 N KCl; soluble potassium and 

phosphorus by Mehlich 1 method (0.05 N HCl in 0.025 N H2SO4). Soil physical data 

consisted of particle size measurements, comprising sand (2.00–0.05 mm), silt  

(0.05–0.002 mm), and clay (< 0.002 mm) measured by the hydrometer method using  
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Na-hexametaphosphate as chemical dispersant; soil bulk density by the core method;  

and water dispersible clay (WDC). A complete description of the Embrapa soil database can 

be found in Embrapa (2011).    

4.2.1.2. IBGE Soil Database.  

The IBGE (2008) soil database was developed in the frame of the “Systematization of 

Natural Resources Information” project coordinated by the Natural Resources and 

Environmental Studies division/IBGE (CREN).  The information of each soil sample was 

standardized in a harmonized soil geodatabase, which allows interface with GIS (Geographic 

Information Systems). The samples are divided by horizons according to the Brazilian Soil 

Classification System (EMRAPA, 2011). The database contains the same information 

presented in the Embrapa soil database (EMBRAPA, 2011); however, there are no soil bulk 

density values available for any of the sampled profiles. A full description of the IBGE soil 

database can be found in IBGE (2008).  

4.2.2. Estimation of Soil Bulk Density  

In Podzol region (Figure 4.1), the soil bulk density was directly determined by the 

Kopeck ring method described by Blake et al. (1986). The remaining soil orders had their 

bulk density values estimated and validated based on the Embrapa (2014) database. Two 

aspects were considered to select the most reliable PTF function: the versatility of the 

proposed equation and the soil information available in the two databases used in this study 

(IBGE, 2008; EMBRAPA, 2014). The PTF equations were developed and evaluated using the 

artificial programming tool Eureqa (SCHMIDT; LIPSON, 2009). The database was divided 

in two datasets (training Dataset 1 and validation Dataset 2).  

The independent soil dataset 2 was used in order to compare the proposed model 

(Dataset 1) with the ones presented in previous research (BERNOUX et al., 1998; 

TOMASELLA; HODNETT, 1998; BENITES et al., 2007). Therefore, there is no redundancy 

between Datasets 1 and 2. The Dataset 2 contains 230 soil samples of profiles collected in 

different regions of Brazilian Amazon forest (EMBRAPA, 2014) excluding the samples 

collected in the region of the Amazonia state. The descriptive statistics of the soil attributes 

used to generate the PTF are summarized in Table 4.1.  

Unlike previous studies regarding the development of PFT functions in the Amazon 

region (BERNOUX et al., 1998; TOMASELLA; HODNETT, 1998; BENITES et al., 2007), 

we applied symbolic regression (SR) analysis (KOZA, 1992) in order to generate PTF 

equations. SR is a powerful machine learning modelling technique introduced by John and 
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Koza (1991). Different from linear and nonlinear regression methods, symbolic regression 

searches both the parameters and the form of equations, which allows the automatic 

generation of symbolic regression functions (SCHMIDT; LIPSON, 2009).  

Table 4.1 - Descriptive statistics of the soil attributes of the training and validation datasets (Datasets 1 

and 2).  

 DATASET 1 DATASET 2 

Soil 

Attribute 

Valid 

Cases 
Min. Max Mean S.D.a Valid 

Cases 
Min. Max Mean S.D.a 

Corse Sand (g kg-1) 654 1.0 704.0 162.6 160.1 230 10.0 620.0 201.7 134.6 

Fine Sand (g kg-1) 654 1.0 883.0 219.3 206.0 230 10.0 620.0 243.1 174.8 

Total Sand (g kg-1) 654 2.0 988.0 381.8 284.9 230 20.0 950.0 444.9 266.4 

Silt (g kg-1) 654 2.0 806.0 214.6 168.1 230 20.0 482.0 116.1 91.1 

Clay (g kg-1) 654 10.0 880.0 403.6 228.7 230 20.0 960.0 439.1 246.8 

pH 654 3.3 7.4 4.9 0.7 230 3.6 7.3 5.3 0.9 

K+ (cmolc kg-1) 654 0.0 1.0 0.1 0.1 230 0.0 1.0 0.1 0.2 

SiO2
 (g kg-1) 654 0.0 325.0 109.5 65.2 230 8.7 379.0 147.7 93.2 

Al2O3 (g kg-1) 654 0.0 426.0 129.3 72.6 230 6.9 345.1 150.9 101.3 

Fe2O3 (g kg-1) 654 0.0 467.0 55.5 50.6 230 1.4 259.0 60.9 59.1 

SOC (g kg-1)b 654 0.2 115.5 8.5 10.7 230 0.2 46.7 8.0 7.8 

N (g kg-1) 654 0.1 4.7 0.9 0.8 230 0.1 10.0 0.9 1.2 

C/N (%) 654 0.0 96.0 8.3 7.4 230 0.1 27.0 10.0 4.7 

ρp (g cm-3)c 654 0.8 1.9 1.3 0.2 230 0.9 1.8 1.3 0.2 
aStandard Deviation; bTotal Organic Carbon; cMeasured soil bulk density 

 

We used the coefficient of determination (r2), the mean squared error (MSE), the root 

mean square error (RMSE) and Akaike’s Information Criterion (AIC) in order to access the 

accuracy of the proposed PTF against the ones presented in previous research, considering the 

independent Dataset 2 (Table 4.1). MSE, RMSE and AIC are defined as:  

𝑀𝑆𝐸 =
1

𝑛
∑(𝜌̂𝑖 − 𝜌𝑖)

𝑛

𝑖=1

 Eq. 4.2 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝜌𝑖 − 𝜌̂𝑖)2

𝑛

𝑖=1

  

 

Eq. 4.3 

𝐴𝐼𝐶 = 𝑁𝑙𝑛 [
1

𝑛
∑(𝜌𝑖𝜌̂𝑖)

2

𝑛

𝑖=1

] + 2𝑃 Eq. 4.4 

Where 𝜌̂𝑖 and 𝜌𝑖 are the observed and predicted soil bulk density values, respectively, 

𝑖 is the soil sample, 𝑃 is the number of parameters used, 𝑛 is the total number of observations 

and 𝑁𝑙𝑛 is the natural logarithm. The best model is that with MSE and RMSE values closer to 

0 and the smaller AIC value. 
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4.2.3. Modeling the vertical distribution of SOC  

 The prediction of soil bulk density values based on PTF was applied to allow the 

estimation of SOC stock in the region of Rio Negro basin due to the absence of 𝜌𝑝 values in 

IBGE soil database (IBGE, 2008). The 𝜌𝑝  values were applied to convert SOC content from a 

mass basis (kg C kg-1) to a volume basis (kg C m-3). The resulting values were used to predict 

SOC stock (kg C m-2) in selected profiles (Figure 4.1).  We divided the database in two 

datasets according to the fitting functions applied to model the vertical distribution of SOC 

stock: (i) Dataset A, which comprises soil profiles that can have their SOC stock modelled by 

exponential decay equations; (ii) Dataset B, referent to samples collected in field (Podzols), 

where the vertical distribution of SOC stock cannot be explained by exponential decay 

equations. The methods concerning each dataset are described below.  

4.2.3.1. Exponential Depth Function: Dataset A.  

The following negative exponential function was fitted for each sample point in the 

calibration dataset from the surface to variable soil depth according to each soil profile:  

C = 𝐶𝑖 ∗ 𝑒𝑥𝑝(
−𝑧
𝑏

) + 𝑦0 
Eq. 4.5 

Where 𝐶𝑖  is SOC content in volume basis (kg C m-3); 𝑧 is the soil depth (m) for a 

given horizon; 𝑏 is the SOC decay constant and 𝑦0 is the absolute value of depth (m). The 

integral of Equation 4.5 (Equation 4.6) represents C stock to depth z (dz): 

𝐶𝑡 = ∫ (𝐶𝑖 ∗ 𝑒𝑥𝑝(
−𝑧
𝑏

) + 𝑦0)
𝑑𝑧

0

  Eq. 4.6 

Where 𝐶𝑡 is the amount of organic C stored per unit area (kg C m-2). Integrating 

Equation 4.6, the C stock from the soil surface to depth 𝑧(𝑑𝑧) is given by the Equation 4.7: 

𝐶𝑡 =  −𝐶𝑖 𝑏 exp(
−𝑧
𝑏

) + 𝑦0 𝑑𝑧 +  𝐶𝑖  𝑏 
Eq. 4.7 

 

The Equation 4.7 was applied to estimate C stock in all profiles excluding regions of 

Podzols. The equation parameters (Ci, z, b and y0) were predicted individually for each profile 

with variable dz values according to the soil depth of each observed profile. We used 25 soil 

profiles provided by IBGE (2008) to validate the negative exponential function (Equation 

4.7). Thus, the parameters for the 25 validation profiles were generated at 1m soil depth in 

order to predict SOC stock at a 3m soil depth. The validation was based on measured values 

(IBGE, 2008) down to 3m soil depth.  
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4.2.3.2. Podzol Depth Functions: Dataset B.  

The soil samples provided by the two systematic databases available in the Amazon 

(IBGE, 2008; EMBRAPA, 2014) have an insignificant number of profiles collected in Podzol 

areas. Moreover, the sampling soil depth is always up to 2m, which is limited to the topsoil 

(O/A horizons), elluvial (E) horizon and the first centimetres of the spodic horizon (Bh). 

Given this, we collected samples in different regions of Podzols, totalizing 18 soil profiles 

(Figure 4.1). For each profile we have collected from 12 to 36 samples (layers), taking into 

account deep/thick spodic horizons (from 4.5 to 6m soil depth).  

The vertical distribution of SOC stock was modelled according to three fitting models: 

(i) Non-parametric equal-area splines (BISHOP et al., 1999); parametric (ii) Sum of Sines and 

(iii) Fourier periodic fitting models (RENSHAW; FORD, 1984). It is important to highlight 

that periodic fitting models were not applied in previous researches related to vertical 

distribution of SOC stock. Usually soil attributes have a vertical behaviour that cannot be 

explained by periodic models. However, we observed that Podzols can have their vertical 

SOC content distribution fitted in these models due to a specific pattern along the soil 

horizons. A brief description of the Podzol fitting models is presented below.  

Equal-area splines: The spline model assumes that soil attributes vary smoothly with 

depth, which is translated into mathematical terms by denoting depth by z, and the depth 

function describing the true attribute values by f(z). Given this, f(z) and its first derivative  

f0(z) are both continuous, and f0(z) is square integrable. The depths of the boundaries of the n 

layers or soil horizons are given by z0 (< z1; . . . < zn). Thus, the measurements of  

Ci (i = 1; …n) are mathematically modelled as:  

𝐶𝑖 =  𝑓𝑖̅ + 𝑒𝑖 , Eq. 4.8 

Where 𝑓𝑖̅ =  ∫ 𝑓(𝑧) 𝑑𝑧 (𝑥𝑖 𝑥𝑖−1)⁄
𝑧𝑖

𝑧𝑖−1
 is the mean value of f(z) considering the interval 

(𝑥𝑖 𝑥𝑖−1). The errors are assumed independent, with mean 0 and common variance 𝜎2. f(z) 

denotes a spline function that can be determined by minimizing:  

1

𝑛
∑ (𝐶𝑖 − 𝑓𝑖)2 +  𝜆 ∫ 𝑓′

𝑧𝑛

𝑧0

𝑛

𝑖=1
(𝑧2) 𝑑𝑧 Eq. 4.9 

The first term describes the model fit to data and the second one measures the 

roughness of function f(z), expressed by its first derivative f0(z). Parameter λ controls the 

trade-off between the fit and the roughness penalty. The solution is a linear-quadratic 

smoothing spline (BISHOP et al., 1999). The values of SOC were included on the model as 



85 

 

 

volumetric basis (kg C m-3). The total SOC stock of each profile (kg C m-²) was calculated 

summing the resulting values of the fitted model. Bishop et al. (1999) has already  

discussed the methods to establish a proper 𝜆 value. Given this, we considered a standardized 

𝜆 value of 0.1.  

Fourier series fitting: Specific Fourier models were developed for each Podzol profile, 

considering sums of sine and cosine functions (Equation 4.10) assuming the behaviour of 

SOC along the profile as a periodic signal to a limited soil depth. The Fourier series to 𝑛 

terms is given by:  

𝐶 = 𝑎0 + (∑ a𝑖𝐶𝑂𝑆(𝑖𝑤𝑧)
𝑛

𝑖=1
+ 𝑏𝑖𝑆𝐸𝑁(𝑖𝑤𝑧)) Eq. 4.10 

Where 𝑎0 models an intercept term in the data and is associated with the 𝑖 = 0 cosine 

term, 𝑤 is the fundamental frequency of the signal, 𝑛 is the number of terms in the series, and 

limited to 1 ≤ n ≤ 8, 𝑧 is the soil depth interval. We applied four terms in order to achieve the 

best model adjustment. The resulting parameters were used to estimate the SOC stock in the 

whole profile, after applying the integration of the Fourier series (Equation 4.11).   

𝐶𝑡 = ∫ (𝑎0 + ∑ a𝑖𝐶𝑂𝑆(𝑖𝑤𝑧)
𝑛

𝑖=1
+ 𝑏𝑖𝑆𝐸𝑁(𝑖𝑤𝑧))

𝑑𝑧

0

 Eq. 4.11 

 Where 𝐶𝑡 is the amount of organic 𝐶 stored per unit area (kg C m-2) and dz refers to the 

profile depth. After integrating the 4 terms of the Fourier series function to 𝑑𝑧 depth, we 

obtained the following equation:  

𝐶𝑡 =  
0.25a4 sin(4𝑤𝑑𝑧)

𝑤
−

0.25b4 cos(4𝑤𝑑𝑧)

𝑤
+

0.333a3 sin(3𝑤𝑑𝑧)

𝑤
−

0.333b3 cos(3𝑤𝑑𝑧)

𝑤
+

0.5a2 sin(2𝑤𝑑𝑧)

𝑤
 

−
0.5b2 cos(2𝑤𝑑𝑧)

𝑤
+

1a1 sin(𝑤𝑑𝑧)

𝑤
−

1b1 cos(𝑤𝑑𝑧)

𝑤
+ 1𝑎0𝑑𝑧 +

0.25b4

𝑤
+

0.333b3

𝑤
+

0.5b2

𝑤
+

1b1

𝑤
 

Eq. 4.12 

 Where the parameters 𝑎0, a and 𝑏 are given for each Fourier term, with 95% 

confidence bounds.  

Sum of Sines fitting: The Sum of Sines is similar to the Fourier fitting. However, it 

includes the phase constant and does not include a constant term. The Sum of Sines function 

is represented by the following equation:  

𝐶 = ∑ a𝑖 sin(𝑏𝑖

𝑛

𝑖=1

𝑧 + 𝑐𝑖) Eq. 4.13 
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Where a is the amplitude, 𝑏 is the frequency, and 𝑐 is the phase constant for each sine 

wave term. 𝑛 is the number of terms in the series. We also included four terms to fit the SOC 

stock in Podzol profiles. The integration to 𝑑𝑧 soil depth is shown in Equation 4.14.  

𝐶𝑡 = ∫ (∑ a𝑖 sin(𝑏𝑖

𝑛

𝑖=1

𝑥 + 𝑐𝑖)) 
𝑑𝑧

0

 Eq. 4.14 

After integrating the four terms of the Sum of Sines fitting to 𝑑𝑧, we obtained the 

Equation 4.15 as follows:  

𝐶𝑡 =
−(a4 𝑐𝑜𝑠(𝑏4𝑑𝑧 + 𝑐4))

𝑏4
−

a3 𝑐𝑜𝑠(𝑏3𝑑𝑧 + 𝑐3)

𝑏3
−

a2 𝑐𝑜𝑠(𝑏2𝑑𝑧 + 𝑐2)

𝑏2
−

a1 𝑐𝑜𝑠(𝑏1𝑑𝑧 + 𝑐1)

𝑏1
+

a4 𝑐𝑜𝑠(𝑐4)

𝑏4
 

+
a3 𝑐𝑜𝑠(𝑐3)

𝑏3
+

a2 𝑐𝑜𝑠(𝑐2)

𝑏2
+

a1 𝑐𝑜𝑠(𝑐1)

𝑏1
 

Eq. 3.15 

The parameters a, 𝑏 and 𝑐 are given for each Sum of Sines term with 95% confidence 

bounds. The evaluation of results was carried out by comparing observed and predicted SOC 

stock values, considering the coefficient of determination (r2), MSE, RMSE and AIC.  

 

4.3. Results 

4.3.1. Predicting Soil Bulk Density in Amazon Soils 

In the first attempt to generate a PTF function (Dataset 1), we considered all soil 

attributes presented in Table 4.1. The best model was achieved (Model 1: Eq. 3.16) with the 

following input data: fine sand, silt, clay, total N and C/N. The symbolic regression analysis 

considering all input data returned a generalized equation (Equation 4.16) that explained 70% 

of the soil bulk density variance (Figure 4.2a). The RMSE and MSE between predicted and 

observed values were 0.011 g cm-3 and 0.108 g cm-3, respectively.  

 Arithmetic and trigonometric operators were selected by the user and automatically 

added to the final equation. As pointed out by Benites et al. (2007), a better correlation 

between N and ρp, when compared to SOC content is observed in Embrapa (2014) database. 

That might be related to the total SOC measurement procedure (acid-dichromate FeSO4 

titration procedure) adopted by Embrapa. The use of C/N and N values on the resulting 

symbolic regression equation (Equation 4.16) might poses a problem towards the proposition 

ρp = 1.463+0.1998tan(1.044-0.002(clay))cos(0.125+0.135(C/N)+(3.543 10-5)(silt 2)-0.013(silt)) 

cos(0.004(fine sand)cos(0.315+tan(0.005(clay)-2.317))-1.065cos(0.315+tan(0.005 (clay)-2.317)))-

0.144(total N) 

Eq. 4.16 
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of a general PFT equation for Amazon soils due to the lack of such data in most of soil 

databases currently available. Thus, we used the following input data to train the symbolic 

regression model (Model 2: Equation 4.17; Figure 4.2b): total sand, silt, clay, pH and SOC. 

ρp  = 1.326+0.315 sin(1.045-0.001(clay)-0.052 (SOC))+0.0003 (clay) sin(sin(2.561+ 1.287(pH) - 0.006 

(clay)))-0.134 sin(sin(2.561+1.287(pH) - 0.006(clay))) 
Eq. 4.17 

The Model 2 (Equation 4.17) had a lower correlation with the observed dataset (Figure 

4.2b), however It takes into account three soil attributes that are widely available in most of 

systematic soil databases (EMBRAPA and IBGE legacy data). Therefore, Model 2 was 

applied in order to predict values of soil bulk density. The Model 2 had an RMSE and MSE of 

0.015 g cm-3 and 0.123 g cm-3, respectively. The validation was based on the independent 

Dataset 2, as described below. 

 
Figure 4.2 -  Plot of the predicted data against the observed data. (a): Model 1; (b): Model 2. Dashed 

lines are the 1:1 lines. 

 

4.3.1.1. Symbolic Regression Model Validation  

The proposed Model 2 (Figure 4.3) has shown the best performance, among the 

evaluated PTF functions, with MSE and RMSE closest to 0 and the lower AIC value. 

However, the model proposed by Benites et al. (2007) has a similar behavior with close MSE, 

RMSE and AIC indices. Thus, we observed that Benites’ et al. (2007) model could be applied 

to estimate soil bulk density in Amazon soils, but with the disadvantage of demanding Fe2O3 

values, which are not available in most of the soil profiles provided by IBGE (2008).  
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Figure 4.3 -  Scatterplots and goodness of fit indexes of proposed and previous soil bulk density PTF 

functions. (a): Proposed Model 2; (b): Benites et al. (2007); (c) Bernoux et al. (1998) and 

(d): Tomasella; Hodnett (1998). Dashed lines are the 1:1 lines. 

Clay content and SOC have been reported in previous studies as the most relevant 

attributes to explain soil bulk density variability (BERNOUX et al., 1998; BENITES et al., 

2007). Given the availability of soil textural fraction, pH and SOC data in the applied soil 

databases (IBGE, 2008; EMBRAPA, 2014), we decided to use the Model 2 in order to 

estimate soil bulk density values. It is important to highlight that this model was developed 

based on soil samples limited to the region of the Amazon basin, which might derail its 

application in areas outside Amazon biome.   

4.3.2. Modeling the vertical distribution of SOC stock in Amazon soils 

The main soil orders in Rio Negro basin are Ferralsols (34% of the region); Acrisols 

(22% of the region) and Podzols (19% of the region). The remaining orders comprise 

Gleysols (6%) and Plinthosols (5%). Arenosols, Nitisols and Planosols account to less than 

10% of the soils of Rio Negro basin.  At the first 0.3m soil depth we observed that Ferralsols 

and Acrisols have a mean SOC content of 1.8±1.4% and 1.5±1.1%, respectively.  

Below 0.3m (0.3 to 0.8m) the SOC content in theses soils decays to 0.57±0.5% in Ferralsols 
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and 0.44±0.6% in Acrisols.  The superficial horizons of Podzols have a higher carbon 

concentration (0-0.3m: 2.7±1.5%). The same pattern was observed in deep thick Bh horizons 

(1 to 3m soil depth) where the mean carbon content is 2.31±2.1%.  

All soils that had their SOC stock modeled by exponential depth functions were 

grouped together (Dataset A). After integration (Equation 4.9), the exponential functions 

showed a mean r² value of 0.99 and a RMSE of 0.85 kg C m-2 between the observed and fitted 

SOC stock (Figure 4.4a). These results indicate that the exponential depth functions fitted the 

data very well, with an r² closer to 1 and an RMSE below 1 kg C m-2. It’s important to 

highlight that 5% of the soil profiles originally provided by IBGE (2008) were not fitted to 

exponential equations due to the low number of observed soil layers  (2.4% of profiles) or 

because of the occurrence of high amounts of SOC content in horizons below 0.3m (2.6% of 

profiles).   

   
Figure 4.4 -  (a) Observed and fitted exponential depth function SOC; (b) Observed and predicted 

exponential depth function, based on the validation dataset. Dashed line is the 1:1 line. 

As we can see in Figure 4.4b the predicted SOC values fitted well to the observed data 

with an RMSE of 2.5 kg C m-2 considering a 3m soil depth, which allows the prediction of 

SOC stock in Amazon soils in deeper horizons (below 1m). The validation dataset comprises 

soil profiles of Acrisols and Ferralsols, which are dominant in Amazon basin. Therefore, 

exponential depth functions offer a feasible way to estimate SOC stock in Amazon biome. 

However, this assumption is not valid for Podzols due to the peculiar distribution of SOC 

along the profile (Figure 4.5).   

The pedogenitic processes involving the formation of Podzols have already been 

investigated by several studies in Amazon (LUCAS et al., 1984; 1988; 1996;  

CHAUVEL et al., 1987; BRAVARD; RIGHI, 1990; DUBROEUCQ; VOLKOFF, 1998; 
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NASCIMENTO et al., 2004; MONTES et al., 2007; PATEL-SORRENTINO et al., 2007; 

FRITSCH et al., 2009; MONTES et al., 2011). All researches developed in this region have 

described the occurrence of sandy soil materials (E horizon) that lead to the leaching of Al 

and Fe organic matter complexes, resulting in the dissolution of clay minerals, Al-hydroxides 

and Fe-oxides or Fe-oxyhydroxides, causing the formation of illuvial deep Bh rich-SOC 

horizons. Based on these characteristics we divided Podzol profiles in four systematic 

horizons according to their SOC content: 1. SOC-rich topsoil horizon (A/O); 2. Elluvial sandy 

horizon with insignificant amount of SOC; 3. Deep thick SOC-rich Bh horizon; 4. C horizon 

with a gradual decrease in SOC content (Figure 4.5).  

 
Figure 4.5 -  Measured SOC stock. (a): Dataset A (Ferralsols and Acrisols); (b): Dataset B (Podzols). 

aTypical Ferralsol horizons. bTypical Podzol horizons with average thickness for 

evaluated Podzol profiles.  

We observed a clear periodical pattern that fit very well in Sum of Sines and Fourier 

models (Table 4.2). Nevertheless, spline models have generated the best predicted values 

when compared to measured data (Table 4.2). It’s important to emphasise that the 

establishment of 𝜆 (lambda) values is laborious and depends on the availability of several soil 

samples for each soil profile, which allows an appropriate representation of the soil attribute 

to be measured. Given this, we decided to apply the 𝜆 value of 0.1 as suggest by Bishop et al. 

(1999). The periodical models were fitted to the observed data with 2, 3 and 4 terms. The best 

fitting was achieved with 4 terms in both Fourier and Sum of Sines models.   
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Table 4.2 - Evaluation indices for the three fitting models considering Dataset B (Podzols).  

Fitting Model Observations R² MSE (kg C m-2) RMSE (kg C m-2) AIC 

Equal-area Spline 18 0.85 187.21 13.68 96.06 

Sum of Sines 18 0.82 225.38 15.00 99.40 

Fourier 18 0.79 255.12 15.97 101.63 

The curve fitting of Dataset B was created considering all measured layers of each 

Podzol profile as shown on the example of Figure 4.6. We observed a complex distribution of 

SOC along a typical Podzol profile. As we can see in Figure 4.6 the SOC content in Bh 

horizon is highly variable with abrupt changes in depth intervals lower than 0.05m (Figure 

4.5). The variation in C content within Bh horizon is explained by pedogenitic processes of 

this horizon. What is observed here is a process of reduction and re-oxidation of 

organometallic complexes leading to the selective accumulation of different amounts of C in 

Bh horizon.  

 
Figure 4.6 -  Example of fitting models to a typical Podzol profile. (a) Equal-area Spline; (b) Sum of 

Sines; (c) Fourier.  

Considering the parametric equations, we observed a better performance of the Sum of 

Sines fitting, confirmed by the quality evaluation indices (Table 4.2). Thus, the integration of 

the Sum of Sines model to the observed soil depth (Equation 4.15) was capable of 

representing the complex distribution of SOC stock within Bh horizons (Figure 4.6), which 

justifies the application of a 4 terms Sum of Sines model. It’s interesting to highlight that Sum 

of Sines as well as Fourrier models, deals with trigonometric and circular functions, usually 

applied to describe attributes with clear periodical behaviour. In this context, we assumed that 

SOC stock in Podzols has a periodical pattern, which implies in modelling the profile to a 

limited range according to the observed data, where the assumption of periodicity is attested. 

Therefore, the prediction of values is limited to the measured soil depth, which means that we 

cannot predict SOC stock values beyond the measured layers considering the three fitting 

models: Spline, Sum of Sines and Fourier.     



92 

4.3.3. The SOC stock in Dataset A and B 

In Dataset A, we observed that a significant portion of the SOC stock is located at the 

first 0.3m soil depth with an average stock of 8.2±5.0 kg C m-2. Such value represents 41% of 

the total SOC stock at 3m soil depth. At the first soil meter we observed that the profiles 

evaluated in Dataset A store about 15.2±6.2 kg C m-2, which is 76% of the total SOC stored in 

profiles up to 3m soil depth. Finally, if we take into account the entire soil profile (3m soil 

depth) the SOC stock increases to a value of 19.2±10.7 kg C m-2. Thus the carbon stored in 

deep soil horizons, from 2 to 3m soil depth, represents about 19.2% of the total SOC stored in 

the first 3m soil depth of Dataset A. We observed high standard deviation values due to the 

grouping of different soil orders into the same dataset in order to compare the vertical 

behavior of SOC stock distribution in Dataset A against Dataset B (Podzols). Different from 

other Amazon soils, Podzols have shown a high capacity of storing huge amounts of SOC in 

deep thick horizons (Bh), with a complex vertical distribution that was not evaluated in 

previous studies.  

In Podzols the organic (O/A) horizon stores higher amounts of C when compared to 

other Amazon soils due to the prevalence of hydromorphic conditions that leads to the 

accumulation of fresh MOS in surface. In O/A horizon the average SOC stock is 17.9±11 kg 

C m-2 at 0.3m soil depth. In elluvial sandy horizons (E) the SOC stock abruptly decays to an 

average value of 4.8±2.7 kg C m-2. The thickness of E horizon is variable ranging from 0.5 to 

1.5m, depending on the observed profile. The Bh horizon stores a mean SOC value 

significantly high with an average stock of about 83.2±15.5 kg C m-2 to a 2m horizon 

thickness. It is important to highlight that the upper and bottom limits of Bh horizon are 

variable which implies in different Bh thickness according to the observed profiles, however 

the values presented above were taken to a 3m soil depth. Nevertheless, Bh horizons might 

extend to a 5m soil depth, which would increase the average SOC stock of Podzols.  

4.4. Conclusions 

 The good performance of the exponential depth function was attested down to 3m soil 

depth based on the validation dataset. Thus, the application of exponential models to predicted 

SOC stock in Amazon soils has proven to be efficient, considering the availability of 

measured values to the first soil meter.  Nevertheless, information of soil bulk density was 

essential to allow the systematic estimation and prediction of SOC stock. The prediction of 

soil bulk density data was possible by the application of PTF equations developed according 

to symbolic regression analysis (SR), which generated a dynamic model suited to predicting 
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soil bulk density specifically in Amazon soils. Soil bulk density PTF models and exponential 

depth functions have allowed the estimation of SOC stock in Amazon soils where the 

assumption of SOC content exponential decay was attested. The prediction of SOC stock by 

exponential decay equations is simple and can be carried out indirectly by integrating the 

exponential model to a desired soil depth, which is helpful to estimate deep SOC stock in 

Amazon soils. 

 In Podzols, the SOC stock is significantly higher than in other Amazon soils, 

especially below 1m soil depth. The vertical variation of SOC was successfully modeled by 

parametric and non-parametric fitting models. The non-parametric equal-area spline model 

returned the best predicted values. Moreover, the fitted spline curves are not affected by local 

variations, due to the possibility of fitting piece wise a series of local independent functions 

over small intervals (soil depths). However, the application of parametric models might be 

helpful to allow the indirect prediction of SOC stock in Podzols and to describe the general 

behavior of SOC along the soil profile. In this matter, we observed that Sum of Sines models, 

yet not explored in predicting soil attributes, can be properly applied to describe and estimate 

the SOC stock distribution in Amazon Podzols with deep thick Bh horizons.  
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5. Mapping deep plant-derived soil carbon storage in soils of the Rio Negro basin 

Abstract 

Despite its importance as a carbon reservoir at global scale, the Amazonia region still needs detailed 

surveys evolving the quantification and mapping of soil organic carbon (SOC) stock at regional and 

continental scales. The precise estimation of carbon stock is essential for the assessment of carbon 

sequestration capacity, greenhouse gas emissions and national carbon balance inventories, which 

depends on the understanding of SOC storage capacity. Some effort has been made in the last decade 

towards the estimation of SOC stock of the Amazon region. However, most of the research developed 

in this vast region, takes into account surface and sub-superficial soil horizons up to 0.3m. Moreover, 

these studies are not systematically organized, which makes it difficult the generalization of the SOC 

stock to smaller map scales. Therefore, in the present research, we applied legacy data, field sample 

data and remote sensing imagery to quantify and map the SOC stock in deep soil horizons in the 

region of Rio Negro basin. Ordinary kriging (OK) and regression kriging (RK) were employed to 

generate the SOC stock maps at Rio Negro basin map scale, at 1m and 3m soil depth. Both kriging 

methods generated similar results, with a better performance for RK at 1m soil depth and for OK at 

3m soil depth. Nevertheless, the mapping of SOC stock in Rio Negro basin by RK, allowed for a more 

detailed spatialization of SOC stock distribution according to an ancillary database. Therefore, the RK 

resulting maps were used to estimate the SOC stock in the study area. According to RK map, the Rio 

Negro basin had an absolute SOC stock of about 5.75 Pg at 1m soil depth and 10.12 Pg at 3m soil, 

which is about twice the value found on the first soil meter. However, if we take into account an 

average stock of 80 kg C m-2 found in Podzols at 6m soil depth, theses soils have an absolute SOC 

stock of 9.19 Pg, within the area of the Rio Negro basin. 

5.1. Introduction 

The evaluation of the soil organic carbon (SOC) stock at regional and national map 

scales depends on the availability of systematic well distributed soil samples, which might be 

not available in most of the tropical forests of the world (BATJES, 1996; 1997). In extensive 

natural regions (eg.: Amazon Forest), the only source of soil information comprises legacy 

databases (eg.: data derived from conventional soil surveys) provided by governmental 

agencies or academic researches (CERRI et al., 1999; BERNOUX et al., 2002; CERRI et al., 

2007; IBGE, 2008; MONTES et al., 2007; 2011; PEREIRA et al., 2015). Given this, the 

systematization of available information in a harmonized database is important in order to 

combine multisource information that can be used to estimate SOC stock based on soil profile 

data. The estimation of SOC stock depends mostly on the adoption of multisource legacy 

database due to the lack of well distributed field sample data in Amazon Forest. Moreover, the 

application of pedotransfer functions (PTF) is necessary to standardize multisource 

information and to predict soil attributes based on soil sample data (MONTES et al., 2011).  
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Numerous studies have attempted to assess the potential of the soils to store and retain 

carbon as organic matter at the first soil meter (POST et al., 1982; KIMBLE, 1990; 

BURINGH, 1994; ESWARAN et al., 1993; BATJES, 1996; CERRI et al., 1999; BERNOUX 

et al., 2002). However, less attention is given to the role of soil carbon pools stored in deep 

soil horizons below 1m soil depth, on modelling future scenarios of global climate change. As 

pointed out by Batjes (1996), regions of tropical Ferralsols and Acrisols might have an 

increase of about 50% on them SOC stock if the second soil meter is taken into account. 

According to the guide of good practice for land use - IPCC (DRÖSLER et al., 2013), it is 

important to measure the soil carbon pool at soil depth of at least 0.30m. Therefore, 

depending on the soil type and the vegetation cover, the depth for SOC content measurement 

is variable, considering the SOC pool more likely to be mineralized due to changes on the 

natural soil cover or soil hydrologic regime (MONTES et al., 2011). In areas of Amazon 

ferralitic soils (Ferralsols and Acrisols) an exponential decay in SOC stock with depth, was 

attested (BERNOUX et al., 1998; BERNOUX et al., 2002), which implies on significant 

diminution on SOC content in the second soil meter. Given this, the SOC stock estimates in 

those soils are always limited to superficial and sub-superficial horizons.    

In Amazon Podzols, the vertical distribution of SOC stock has a different pattern when 

compared to neighbouring soils (Ferralsols and Acrisols). According to recent research 

developed in this region (MONTES et al., 2011), theses soils have a great capacity of storing 

carbon in surface horizons (A/O horizon) and in deep thick spodic horizons (Bh). The Bh 

horizon has an average thickness of about 1.8±0.81m and starts at a soil depth ranging from 

0.9 to 2.3m (PEREIRA et al., 2015b4). Therefore, the acquisition of soil samples in Podzols is 

laborious and demands for innovative techniques (MONTES et al., 2011). Accordingly, 

detailed information regarding the SOC storage capacity of Amazon Podzols, is an open 

debate (BATJES, 2002; EASTER et al., 2007; IBGE, 2008; EMBRAPA, 2014). Thus, new 

approaches are necessary in order to map the occurrence of Podzols and its SOC storage 

capacity in Amazon region. 

The SOC storage capacity of Amazon soils depends on a range of factors such as soil 

types, land cover, annual input of vegetation biomass, soil moisture, topography, lithology 

and annual rainfall. These factors can be related to the lateral variation of SOC stock thought 

the application of spatially depended multiple regression analysis (VAN-MEIRVENNE et al., 

                                                           
4 PEREIRA, O.J.R.; MONTES, C.R.; LUCAS, Y.; MELFI, A.J. Evaluation of pedotransfer equations to predict 

depth soil carbon stock in tropical podzols compared to other soils of Brazilian Amazon Forest. Digital Soil 

Morphometrics: Srings, v. 1, 2015. No prelo. 
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1996; POST et al., 2001). Therefore, thematic maps and remote sensing images associated to 

field sample data are useful in order to map the SOC stock at different map scales, from local 

to continental maps (MISHRA et al., 2010). The approaches to obtain maps of SOC storage 

varies from the measure-and-multiply method (the study area is separated into different strata 

and the SOC measurements within each stratum are multiplied by the area of that strata) to 

more sophisticated approaches that takes into account the spatial variability of SOC and the 

spatial correlation with ancillary environmental variables (MINASNY et al., 2006; 

SIMBAHAN et al., 2006).  

Many studies have explored the capability of geostatistics, artificial neural networks, 

and multiple regression techniques to map SOC stock in local and regional map scales 

(MINASNY et al., 2006; SIMBAHAN et al., 2006; MEERSMANS et al., 2008). However, a 

fewer attention is given to extensive tropical regions, where these techniques remains 

unexplored. Given this, the main goal of this research was to map the SOC stock of Amazon 

soils located in the region of the Rio Negro basin, based on different interpolation methods, in 

order to generate maps of deep SOC stock. The prediction of SOC stock was carried out 

within 1m and 3m soil depth at Rio Negro basin map scale, using profile depth functions, 

ordinary kriging and regression kriging.  

5.2. Methodology 

5.2.1. Study Area 

The study was developed in the region of Rio Negro basin, within its Brazilian 

portion, comprising an area of 603,661 km² (Figure 5.1), which represents around 16% of the 

area of the Amazon basin. In this region prevailing soils are Ferralsols, Acrisols and Podzols 

and their distribution is usually related to the parent material (lithology). The Rio Negro basin 

comprises a vast region of low level plateaus called “Pediplano Rio Branco-Rio” (BRASIL, 

1977), in which the only emerging reliefs are granitic inselbergs, quartzitic crests and fields of 

rolling convex hills, usually associated to Ferralsols and Acrisols. Podzols are commonly 

found in poorly drained depressions of the central parts of the plateaus (BRAVARD; RIGHI, 

1990; NASCIMENTO et al., 2004).  
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Figure 5.1 –  Map of the studied area, showing the major soil orders of Rio Negro basin at the original 

map scale of 1:250,000 (IBGE, 2008). The legacy data (Dataset 1) was provided by 

IBGE (2008) and EMBRAPA (2014). Field sample data (Dataset 2) represents the 

samples obtained in the frame of this research in Podzol regions.   

Numerous studies have attempted to describe the occurrence of Podzol-type soils in 

Rio Negro basin and them correlation with lithology and topography (LUCAS et al., 1984; 

DUBROEUCQ; VOLKOFF, 1998; NASCIMENTO et al., 2004; MONTES et al., 2007; 

BUENO, 2009; MONTES et al., 2011). According to these researches, the soils of Rio Negro 

basin are characterized by the Ferralsol/Podzol soil system, which occurs on a single landform 

unit and on a single parent material (DUBROEUCQ et al., 1991), with close genetic 

connection between Ferralsols and Podzols and without any lithogenic discontinuity (LUCAS 

et al., 1984; LUCAS et al., 1987).  

5.2.2. Field Sample Data 

The field sample data is divided in two datasets comprising the samples collected in 

areas of Podzols, selected in the frame of the this research (Figure 5.1) and the database 

provided by IBGE (2008) and Embrapa (2014), which is randomly distributed in the region of 

Rio Negro basin (Figure 5.1). The legacy data provided by IBGE and Embrapa refers to soil 

samples collected by numerous researches, which have adopted different methods in order to 

estimated values of SOC content. Given this, we adopted the results obtained by Pereira et al. 
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(2015b5) at the soil profile scale. The values of SOC stock were estimated and validated 

according to PTF functions applied in soil profiles of Ferralsols, Acrisols, Gleysols, 

Arenosols, Nitisols, Planolols and Plinthosols. These soils have shown a clear exponential 

decay in SOC content from surface to deep soil horizons up to 3m soil depth. Therefore, the 

samples that had their SOC stock modelled by PTF functions are here referred as Dataset 1 

and the ones comprising Podzol profiles are referred as Dataset 2.  

5.2.2.1. Dataset 1 

The Dataset 1 comprises soil samples provided by IBGE (2008) and accounts to 1442 

sampled soil horizons in 324 profiles randomly distributed in the region of Rio Negro basin 

(Figure 5.1). The soil database of IBGE (2008) was compiled between 1972 and 2008, with 

most of the data collected between 1972 and 1984 in the frame of the RADAMBRASIL 

project. The database is systematically organized by soil horizons according to the Brazilian 

soil classification system (EMBRAPA, 2014). The values of SOC stock were obtained by 

exponential depth functions. Values of soil bulk density are not available in IBGE (2008) 

database. Given this, the soil bulk density values were obtained by symbolic regression 

analysis, according to PTF model proposed by Pereira et al. (2015b5). We used soil samples 

with values of soil bulk density to train and to validate the PTF model, which comprises a set 

of 893 soil samples distributed in the region of the Amazonas state, provided by Embrapa 

(2014). A detailed description of the SOC stock estimation methods and the respective 

prediction errors are discussed by Pereira et al. (2015b5).  

5.2.2.2. Dataset 2 

The SOC stock in Podzols was estimated in 18 soil profiles. The vertical distribution 

of SOC stock along Podzol profiles is different when compared to adjacent soils, which 

demands for detailed sampling of soil horizons in order to represent the real distribution of 

organic carbon along the soil horizons. Thus, we collected 393 soil samples, within 18 

Podzols profiles. The values of SOC content were obtained by the dry combustion technique 

using a Shimadzu TOC-5000 apparatus. Values of soil bulk density were measured in 

undisturbed samples by the Kopeck ring method (BLAKE; HARTGE et al., 1986). The SOC 

stock was estimated at 1m and 3m soil depth. Additionally, we estimated the SOC stock in 

Podzol areas at 6m soil depth, taking into account the average thickness of spodic horizons.  

                                                           
5 PEREIRA, O.J.R.; MONTES, C.R.; LUCAS, Y.; MELFI, A.J. Evaluation of pedotransfer equations to predict 

depth soil carbon stock in tropical podzols compared to other soils of Brazilian Amazon Forest. Digital Soil 

Morphometrics: Srings, v. 1, 2015. No prelo. 
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5.2.3. Ancillary data 

The ancillary data refers to information indirectly related to the lateral variation of 

SOC stock at Rio Negro basin. The ancillary dataset is composed by georrefered remote 

sensing images (USGS, 2015), digital maps at the map scale of 1:250,000 (IBGE, 2008), 

vegetation biomass (SAATCHI et al., 2007) and climate data (CPRM, 2015), which refers to 

mean annual temperature and mean annual precipitation, measured for the last three decades 

and spatialized in a continuous surface by ordinary kriging (CPRM, 2015). Table 5.1 

summarizes the ancillary data used in the present research. 

Table 5.1 - List of ancillary data used to predict the distribution of soil organic carbon stock. 

Ancillary data 
Variable 

Type 
Description Range of values 

Map Scale 

or 

Resolution 

Source 

Soil Orders Categorical 
Soils organized by 

order 
9 Classes 1:250000 IBGE (2008) 

Geology Categorical Parent Material (age) 10 Classes 1:250000 IBGE (2008) 

Soil Cover Categorical Natural Vegetation  13 Classes 1:250000 IBGE (2008) 

Geomorphology Categorical 
Type of Relief 

Dissection 
4 Classes 1:250000 IBGE (2008) 

Elevation Continuous 
Land Surface Elevation 

SRTM* (m) 
5 to 2968 m 90 x 90m USGS (2015) 

Slope Gradient Continuous 

Maximum rate of 

change 

between the cells 

and neighbours 

0 to 90º 90 x 90m USGS (2015) 

Catchment Area Continuous Area of catchments 
61454 to 1.09 

108 m2 
90 x 90 USGS (2015) 

Wetness Index Continuous 
SAGA* Wetness Index 

(Böhner et. al, 2006). 
8.2 to 16.7 90 x 90m USGS (2015) 

Biomass Continuous 

Vegetation Biomass in 

Megagrams per 

Hectare 

0 to 11 Mg ha-1 500x500m 
Saatchi et al. 

(2007) 

NDVI* Continuous 

Vegetation Index 

obtained from 

MODIS* products 

-1 to 1 250x250m USGS (2015) 

Precipitation Continuous 
Annual Mean Rainfall 

from 1977 to 2006 
800 to 3700 mm 1:2500000 CPRM (2015) 

* SRTM: Shuttle Radar Topographic Mission; SAGA: System for Automated Geoscientific Analyses; NDVI: 

Normalized Difference Vegetation Index, MODIS: Moderate-Resolution Imaging Spectroradiometer. 

We used categorical and continuous data in order to proceed with the spatial 

correlation with SOC stock values (kg C m-2), as show in Table 5.1. The maps of soil classes, 

soil cover, geology and geomorphology are provided by the Brazilian Institute of Geography 

and Statistics (IBGE, 2008) in vector format (shapefile polygons). The elevation data was 
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derived from Shuttle Radar Topographic Mission (SRTM) images, comprising 13 scenes at 

90m spatial resolution (USGS, 2015). The SRTM images were combined thought mosaicking 

procedure and filtered to remove noises and voids, which resulted in a DEM (Digital 

Elevation Model) for the entire region of the Rio Negro basin. After mosaicking the SRTM 

scenes, the watershed boundaries were delimited from the resulting DEM using automatic 

hydrologic analysis tool in ArcGIS 10.3 (ESRI, 2014), thus the Rio Negro basin mask was 

automatically generated and used to delimit the continuous and categorical data (Table 5.1) 

within the limits of the Brazilian portion of the Rio Negro basin. After obtaining the Rio 

Negro basin limits, the ancillary data (Table 5.1) was subset to the area of the basin and 

converted to grid format. The resulting grids were resampled by bicubic interpolation to the 

nominal spatial resolution of 250-m, in order to standardize the ancillary database.  

The continuous and categorical data were brought to the common projection of 

Mercator, Datum: WGS 1984. The spatial accuracy of the final data was verified based on the 

IBGE (2008) thematic maps and its associated georrefered control points.  

5.2.4. Mapping the SOC stock 

Variations in soil properties can be quantitatively modelled by correlation with 

continuous environmental attributes. Given this, we adopted variables described by the 

SCORPAN principle, which comprises climate, organisms, relief, parent material and 

geological time (BURROUGH, 1993; McKENZIE; RYAN, 1999). These variables were 

derived from the dataset presented in Table 5.1. The incorporation of environmental variables 

to predict the spatial distribution of different soil properties, including SOC stock, is referred 

as Digital Soil Mapping (DSM) and its usage has been extensively discussed in several 

researches (ODEH et al., 1994; GRUNWALD, 2006; GREVE et al., 2007; MINASNY et al., 

2008). Therefore, we explored DSM techniques in order to predict the spatial distribution of 

SOC stock in the Rio Negro basin region.   

The spatial prediction of SOC stock was carried out at two soil depths based on 

ordinary kriging (OK) and stepwise multiple linear regression kriging (RK), according to 

method presented on the flowchart of Figure 5.2. The RK function is composed by a 

deterministic model based on stepwise linear multiple regression (SLMR) and the spatially 

correlated residuals of the regression (unexplained variation). The general principle of RK 

includes regression, and kriging of the residuals from the regression (QUINLAN, 1993), 

where outputs from these two steps are added to obtain the final prediction. The kriging 

methods were performed according to a calibration dataset extracted from the original 
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pointing data. Calibration and validation datasets were obtained by Geostatistical Analysis 

tool in ArcGIS 10.3 (ESRI, 2014) using the Create Subset function. Thus, the original data 

was subset into calibration (75%) and validation (25%) data. The calibration dataset was then 

used to generate the kriging predicted maps, according to methods described below.   

5.2.4.1. Ordinary Kriging 

 Ordinary kriging is the simplest form of kriging. In OK, the regionalized variable is 

assumed to be stationary. Where the variable of interest (𝑍) is modelled by ordinary kriging at 

location 𝑋𝑖 as: 

𝑍(𝑋𝑖) = 𝑚 + 𝑒(𝑋𝑖) Eq. 5.1 

 Where 𝑚 represents a regional mean and is assumed constant and unknown across the 

field.  𝑒(𝑋𝑖) is a spatially correlated random component estimated from the variogram model. 

Therefore, the equation of ordinary kriging is given as:  

𝑍̂(𝑋0) = ∑ 𝜆𝑖

𝑛

𝑖=1
+ 𝑍(𝑋𝑖) 

Eq. 5.2 

Where 𝑍̂ is the estimated value at point 𝑋0 and 𝜆𝑖 is the optimal weight assigned to all 

sample points. The weights 𝜆𝑖 assigned to the sample points sum to 1: i.e.: ∑ 𝜆𝑖
𝑛
𝑖=1 = 1. Thus, 

ordinary kriging is assumed to be optimal because kriging equations are used to minimize the 

kriging variance at each point to be predicted (WEBSTER; OLIVER, 2007). 

5.2.4.2. Regression Kriging 

The applied RK model is a hybrid method that combines either a SLMR regression 

model with ordinary or simple kriging of the regressed residuals (ODEH et al., 1995). Thus, 

RK is a mixed predictor which considers long range structure and local structure. It models 

the trend and its associated residuals, separately. RK is summarized as:  

𝑍̂(𝑆0) = 𝑚̂(𝑆0) + 𝑒̂(𝑆0) Eq. 5.3 

𝑍̂(𝑆0) = ∑ 𝛽̂𝑘

𝑝

𝑘=0
 𝑞𝑘(𝑆0) + ∑ 𝜆𝑖(𝑆0)

𝑛

𝑖−1
 𝑒(𝑆𝑖) 

Eq. 5.4 
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Where, 𝑍̂(𝑆0) is the value of target variable at unvisited location 𝑆0. 𝑚̂(𝑆0) is the drift 

value or fitted deterministic part (trend) at location 𝑆0 and 𝑒̂(𝑆0) is the value of the residuals 

taken according to SLMR resulting models at location 𝑆0. 𝛽̂𝑘 are the estimated coefficient of 

the deterministic part, 𝜆𝑖 are the kriging weights determined by the spatial dependence 

structure of the residuals, 𝑒(𝑆𝑖) is the residual at location 𝑆𝑖, 𝑞𝑘 is the predictor variable at 

location 𝑆0 and 𝑝 is the number of predictors. 

The SLMR resulting equation defines the independent variables (ancillary database) 

used to predict the dependent variable (SOC stock). In the kriging process, this model is 

described by the first term of the Equation 5.4, which defines the regressed surface. Each 

independent variable leads to a coefficient value describing its predictive strength and 

whether it has a positive or negative relationship. Therefore, the regression predicted surface 

is defined as the estimation of the target variable values at pixel’s location based on the 

ancillary raster dataset. The SMRL models were obtained at 1m and 3m soil depth in 

STATISTICA software (STATSOFT Inc., 2006) and written in Python code, compatible with 

ArcGIS 10.3 Spatial Analyst extension, to acquire the regressed surface in the 

abovementioned soil depths.  

 

 
Figure 5.2 – Flowchart of the overall SOC stock prediction method. 

The RK was carried out in two steps. The first one comprises the SLMR analysis, 

which was applied to generate the linear correlated model to predict SOC stock values based 

on ancillary data. According to Equation 5.4, we can run the RK by predicting the values of 
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the target variable (𝑆0) at unvisited locations based on the residuals of the ancillary variables 

(𝑒̂(𝑆0)). Therefore, the second step evolves the derivation of the regression residuals as well 

as the analysis of the residuals’ variance for spatial autocorrelation and fitting of the 

variogram model. The final step evolves the visualization and validation of the results using 

control points. The results of OK and RK were compared based on the validation dataset 

extracted from the original target variable. 

5.2.5. Evaluation of Predicted SOC stock maps 

The SOC stock in the soil profiles was predicted at 1m and 3m soil depths by 

exponential depth functions in Ferralsols, Acrisols, Gleysols, Arenosols, Nitisols, Planolols 

and Plinthosols and by measured values in Podzol profiles. The SOC stock maps were 

generated by kriging interpolation and the estimated values were validated according to the 

validation dataset extracted from the original data. The model performance in predicting SOC 

stock maps was evaluated on 25% of the pointing data. The following three indices were 

calculated: 

𝑅2 =
 ∑ (𝑐𝑎𝑙𝑖 − 𝑣𝑎𝑙𝑖̅̅ ̅̅ ̅)

2𝑛
𝑖=1

 ∑ (𝑣𝑎𝑙𝑖𝑖 − 𝑣𝑎𝑙𝑖̅̅ ̅̅ ̅)
2𝑛

𝑖=1

 Eq. 5.5 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑣𝑎𝑙𝑖𝑖 − 𝑐𝑎𝑙𝑖𝑖)

2
𝑛

𝑖=1
 Eq. 5.6 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑣𝑎𝑙𝑖𝑖 − 𝑐𝑎𝑙𝑖𝑖)2

𝑛

𝑖=1

 Eq. 5.7 

Where 𝑣𝑎𝑙𝑖 and 𝑐𝑎𝑙𝑖 are observed and predicted (validation and calibration) SOC 

stock values from 𝑛 number of observations at ith locations, MSE is the mean squared error, 

and RMSE is the root mean squared error.  

5.3. Results 

5.3.1. Descriptive Statistics 

The SOC stock varies considerably at the two soil depths (1m and 3m). The values 

vary from 1.72 to 93.32 kg C m-2 at 1m soil depth. We observed the same pattern at 3m soil 

depth, with maximum and minimum values ranging from 2.56 to 98.13 kg C m-2. However it 

is important to highlight that the distribution of SOC stock at 1m soil depth is clearly skewed 



107 

 

 

towards lower values when compared to 3m soil depth, that has a distribution closer to normal 

(Figure 5.3a and 5.3b).  

The coefficient of kurtosis, which measures the peakedness of a distribution, was high 

in both measured soil depths (32 kg C m−2 and 12 kg C m−2, at 1m and 3m soil depths, 

respectively), indicating that the distribution of the SOC stock values has more peaked values, 

when compared to a normal distribution. Given this, we employed a lognormal 

transformation, which made the data approximately normal, with means and medians being 

about the same, and reduced the skewness from original values (Figure 5.3c and 5.3d). After a 

lognormal transformation, the SOC stock values for both soil depths showed a distribution 

closer to normal, which is confirmed by the QQ (Quantile-Quantile) plots in Figure 5.4. The 

QQplot provides another option to verify the normality of the SOC stock data.  

 
Figure 5.3 –  Histograms of soil organic carbon (SOC) stock for Rio Negro basin: (a) measured SOC 

data at 1m soil depth; (b) measured SOC data at 3m soil depth; (c) logarithmically 

transformed (LnSOC) SOC data at 1m soil depth; (d) logarithmically transformed 

(LnSOC) SOC data at 3m soil depth.  
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Figure 5.4 –  Normal QQPlot of soil organic carbon (SOC) stock for Rio Negro basin: (a) measured 

SOC data at 1m soil depth; (b) measured SOC data at 3m soil depth; (c) logarithmically 

transformed (LnSOC) SOC data at 1m soil depth; (d) logarithmically transformed 

(LnSOC) SOC data at 3m soil depth.  

 

 In both soil depths (Figures 5.4a and 5.4b) we observed a significant deviation from 

the standard distribution, associated to higher SOC stock values. These values are related to 

Podzol profiles where the SOC stock increases significantly in soil depths ranging from 0.8 to 

more than 3m (MONTES et al., 2011). The increasing in SOC stock occurs abruptly from 

areas of ferralic soils (Ferralsols and Acrisols) to Podzol, where the presence of Bh horizons 

has been attested. Given this, the Dataset 1 has similar SOC stock values at 1 and 3m soil 

depth. However, in Podzol (Dataset 2) the increasing in SOC stock is clearly higher when 

compared to other soils, from 1 to 3m soil depth. 

The segmentation of SOC stock values according to soil orders in Rio Negro basin, 

leads to a high standard deviation due to the extension of the studied area with a great variety 

of natural environments. A proper way to estimate the SOC stock in Amazon soils would be 

thought the application of geostatistical methods, allowing the spatialization of the SOC stock 

according to the different natural environments observed in this region. 
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5.3.2. Mapping the SOC stock in Rio Negro basin 

5.3.2.1. Ordinary Kriging 

We tested a series of variogram fitting models in order to select the one that best fits to 

the experimental model. The variogram adjustment was verified according to the cross 

validation of fitted against measured values. Therefore, we considered the best r², MSE and 

RMSE as error predictors, as well as the spatial autocorrelation, to select the proper variogram 

(Table 5.2 and Figure 5.5). The exponential model had the best adjustment to the measured 

values in both soil depths, as shown in Figure 5.5 and Table 5.2. A significant difference was 

observed on the experimental semiviriograms of the two soil depths. The most remarkable 

difference between the two models (Figure 5.5) is related to a higher spatial autocorrelation 

for SOC stock at 1m soil depth.  

If we take into account an isotropic model, the spatial autocorrelation between lag 

pairs is higher at 1m soil depth. The distance at which the variogram reached its sill was 

584km at 1m soil depth and 55km at 3m soil depth, according to an exponential model. The 

nugget (C0) and sill (C0 + C) were 0.10 and 0.17 at 1m soil depth. However, at 3m soil depth, 

the nugget and sill were 0.12 and 0.18, respectively, indicating a lower spatial autocorrelation 

(Figure 5.5). We found that the nugget, which indicates the small-scale variation of a 

regionalized variable, represented 57% of the sill at 1m soil depth and 66% of the sill at 3m 

soil depth. Given this, the spatial autocorrelation at 1m soil depth is higher when compared to 

3m soil depth (Figure 5.5). We believe that the areas of Podzols had a higher influence on the 

modelled semivariograms at 3m soil depth. Accordingly, the abrupt lateral change of SOC 

content in the spodic horizons of Podzols might causes the loss of spatial autocorrelation, due 

to the lateral increasing in SOC stock from ferralitic soils (mostly Acrisols and Ferrasols) to 

Podzols, which is not evident at 1m soil depth. 

 
Figure 5.5 – Experimental and modelled variograms of soil carbon stock at 1m (a) and 3m (b) soil 

depth for OK.  
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In addition, the error predictors shown in Table 5.2 were used to access the 

performance of the modelled variograms in the two evaluated soil depths. The Cross-

validation was evaluated between measured and predicted values, according to OK 

interpolation. The MSE and RMSE values are smaller at 3m soil depth, when compared to 1m 

soil depth. The correlation coefficient also indicates a better prediction at 3m soil depth (Table 

5.2). The OK predicted surfaces, explained 66% and 84% of the measured spatial variability 

of SOC stock in Rio Negro basin at 1m and 3m soil depth, respectively. However, it is 

necessary to highlight the low spatial autocorrelation for the OK procedure (Figure 5.5) at 3m 

soil depth, which can increase the uncertainties of the predicted values at unvisited locations. 

Thus, a denser validation dataset is necessary in order to evaluate the quality of the predicting 

maps, especially in areas of Podzols where there is a low availability of soil samples. 

Table 5.2 – Prediction error parameters for Ordinary Kriging. The number of samples refers to the 

training dataset (85%). MSE and RMSE values are expressed in kg C m-2.  

Prediction Errors (exponential model) 1m soil depth 3m soil depth 

Samples 275 275 

R² 0.66 0.84 

Mean Squared Error (MSE) 6.22 2.36 

Root-Mean-Square-Error (RMSE) 2.49 1.96 

It is important to highlight that a more realistic representation of the spatial 

distribution of SOC stock in Rio Negro basin depends on the availability of measured SOC 

values at soil horizons down to 3m soil depth and in a denser pointing cloud, to improve the 

spatial autocorrelation. The continental extension of the Amazon basin and the inaccessibility 

of the sampling areas makes it difficult the acquisition of soil samples in a denser pointing 

cloud. Given this, the legacy data (IBGE, 2008) presented in Dataset 1 represents the most 

refined soil database currently available in this region. Such problem is solved by evaluating 

the correlation between SOC stock values and ancillary data at sampled locations, thought the 

application of RK methods.  

5.3.2.2. Regression Kriging (RK) 

Usually RK is performed using geostatistical packages coupled together with the 

statistical software R (PEBESMA, 2004) by the gstat extension, which allows the multiple 

regression analysis, the derivation of the regressed surface and the fitting of the variogram of 

the residuals. However, we decided to use ArcGIS, since it makes it possible the dynamic 

optimized selection of variograms and it provides a wide range of options to process raster 

and vector data. Moreover, programing in Python language is easier and intuitive, which 
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makes it easy the implantation of the SMLR model to generate regressed surfaces. Two 

regression models were obtained according to the evaluated soil depths. Different ancillary 

variables were considered at the two soil depths, taking into account P values for variable 

inclusion and removal of 0.05 and 0.1, respectively. The SMLR analysis returned models with 

moderate to good prediction power, according to a forward automatic selection (Tables 5.3 

and 5.4). 

Table 5.3 – Summary of the SMRL variables selection at 1m soil depth (Regression Kriging). 

No. of variables Variables MSE R² Akaike's AIC 

1 Vegetation 0,17 0,35 -502,07 

2 Geology/Vegetation 0,15 0,47 -539,96 

3 Geology/Geomorphology/Vegetation 0,14 0,49 -543,39 

4 Geology/Geomorphology/Soil/Vegetation 0,14 0,50 -539,47 

5 Rainfall / Geology/Geomorphology/Soil/Vegetation 0,14 0,51 -539,40 

6 Catch. Area/Rainfall /Geology/Geomorphology/Soil/Vegetation* 0,14 0,52 -538,62 

7 Catch. Area /NDVI/Rainfall/Geology/Geomorphology/Soil/Vegetation 0,14 0,51 -537,19 

* Selected model at 1m soil depth. 

Table 5.4 – Summary of the SMRL variables selection at 3m soil depth (RK). 

 

No. of variables Variables MSE R² Akaike's AIC 

 

1 Vegetation 0,25 0,27 -402,25 

 

2 Geology/Vegetation 0,22 0,38 -428,37 

 

3 Geology/Soil/Vegetation 0,20 0,45 -449,27 

 

4 Geology/Geomorphology/Soil/Vegetation 0,19 0,47 -457,88 

 

5 Biomass/Geology/Geomorphology/Soil/Vegetation* 0,19 0,48 -457,78 

 

6 Biomass/Rainfall/Geology/Geomorphology/Soil/Vegetation 0,19 0,48 -456,46 

* Selected model at 3m soil depth. 

The MSE, adjusted R² and Akaike’s (AIC) criterion, indicate the regressed model that 

best explains the target variable. We selected the models 6 and 5 (Tables 5.3 and 5.4) to 

generate the regressed surfaces, at 1m and 3m soil depth, respectively. The relative usage of 

each variable (Figure 5.6 and Figure 5.7) on the general regression models was useful on 

verifying the environmental conditions related to the lateral variation of SOC stock in Rio 

Negro basin. The standardized usage coefficient helps on comparing the relative weights of 

the continuous and categorical variables to build the model. The higher the absolute value of 

the coefficient, the more important the weight of the corresponding variable. As we can see in 

Figures 5.6 and 5.7, the usage of continuous variables was low in both soil depths with a 

higher usage related to Rainfall data at 1m soil depth. Catchment area and biomass were used 

in the models, however with lower weights. Therefore, the variance of the target variable was 

explained, mostly, by the categorical data (Figures 5.6 and 5.7).  
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The categorical information regarding vegetation classes and soil orders had the 

highest usage in the models (Figures 5.6 and 5.7). The areas of high dense forests and the 

geological units representing recent parent materials (Pliocene and Holocene epochs) also had 

an important usage in the regression models. The usage of soil orders was higher at 3m soil 

depth with high standard coefficients related to areas of Ferralsols, Acrisols and Podzols, 

which sums 74% of the total area of the Rio Negro basin.  

 
Figure 5.6 –  Standardized coefficients chart at 1m soil depth, highlighting the most significant classes.   

 
Figure 5.7 –  Standardized coefficients chart at 3m soil depth, highlighting the most significant classes.   
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 The distribution of vegetation classes had the highest standardized coefficients at 1m 

soil depth, whereas soils (Acrisols and Ferralsols) had a strong influence on the resulting 

regression model at 3m soil depth.  Two aspects are related to the high influence of vegetation 

classes’ distribution on the lateral variation of SOC stock in Rio Negro basin. According to 

Anderson et al. (1981) high dense forest occurs in areas of ferralitic soils (Acrisols and 

Ferralsols), while sclerophyllous vegetation physiognomies (Campinarana formations) are 

associated to hydromorphic soils, mostly in Podzol areas. Besides, the soil mapping method 

adopted by IBGE (2008), takes into account the indirect correlation between soils and 

vegetation cover, which explains the strong influence of the vegetation classes on the lateral 

variation of SOC stock. Moreover, it is important to highlight the weight of the geology map 

on the resulting models at 1m soil depth, where we observed high coefficients related to 

recent parent material (Neogene and Quaternary deposits). Therefore, the spatial distribution 

of environmental variables in the categorical images (IBGE, 2008) was decisive to build the 

regressed surface at 1m and 3m soil depth.    

 Regarding the percentage of use in the resulting models, the areas of Acrisols, 

Ferralsols (soil map) and sedimentary deposits (geomorphology map) had a frequency usage 

of above 35% in all regressed models. On the other hand, the continuous data had a usage 

below 5% due to them low correlation with SOC stock values. The highest correlation among 

the continuous data was found between rainfall and SOC stock with an adjusted r² of 0.26. 

Therefore, it is not possible to make any assumption about the lateral distribution of SOC 

stock based only on the continuous dataset.  Given this, the regressed model in the two 

evaluated soil depths was mostly based in categorical data provided by IBGE (2008) maps. 

 At 1m soil depth the experimental variogram of the residuals of the regression, had the 

best adjustment to an exponential model (ordinary kriging of correlated residuals), with a 

nugget (C0) of 0.80 and a range of about 167 km (Figure 5.8), which might indicates a higher 

spatial autocorrelation at longer distances when compared to the OK kriging method (Figure 

5.5a). At 3m soil depth the variogram was adjusted to an exponential model, with a nugget 

(C0) of 0.101 and a range of 84.83km. Thus, it is important to highlight a moderate 

dependence structure at the two evaluated soil depths, with nugget representing 47% and 48% 

of the sill (C0 + C) at 1m and 3m soil depth, respectively.  The nugget/sill ratio of the residuals 

of the regressions reveals that around 48% of the SOC stock variability consists  
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of unexplainable or random variations, for the two evaluated soil depths. Accordingly, new 

efforts are necessary to refine the current number of soil samples in the region of Rio Negro 

basin, which would increase the quality of the kriging procedure. Nevertheless, the spatial 

autocorrelation was higher at the two evaluated soil depths for RK when compared to OK. 

 

 
Figure 5.8 – Experimental and modelled variograms of soil carbon stock at 1m (a) and 3m (b) soil 

depth for RK.  

 

The predicted values of the regressed surfaces without kriging were compared with the 

values obtained by RK (Figure 5.9). As we can see in Figure 5.9, the regression kriging 

resulted in good prediction capability at 1m soil depth and a moderate capability at 3m soil 

depth. The resulting RK predicted map at 1m soil depth, explained 78% of the variability of 

SOC stock in Rio Negro basin (Figure 5.9c), whereas it explained 54% at 3m soil depth, with 

a higher deviation related to high values of SOC stock (Figure 5.9d).  
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Figure 5.9 –  Measured against predicted values of SOC stock: (a) Regressed surface at 1m soil depth; 

(b) regressed surface at 3m soil depth; (c) RK at 1m soil depth; (d) RK at 3m soil depth. 

The values were converted back to SOC stock in kg C m-2 (exponential of Log-SOC). 

The RK predicted map had a better performance at 1m soil depth (MSE: 4.86; RMSE: 

2.21) when compared to OK map (MSE: 6.22; RMSE: 2.49). However, the difference 

between OK and RK predicted maps increases at 3m soil depth. The MSE and RMSE values 

for OK were 2.36 and 1.96, respectively, and increased to 36.43 and 6.04 for RK predicted 

map. The low correlation between environmental attributes and SOC stock at 3m soil depth, 

as well as the abrupt increasing in SOC content, are pointed out as the major reason for the 

moderated predictability capacity of the RK model. The lateral increasing in SOC stock from 

ferralitc soils (Acrisols and Ferralsols) to Podzols is the major reason for such behaviour.  

The RK predicted SOC stock maps at 1m and 3m soil depths, have shown a significant 

increase in SOC stock in the region of hydromorphic soils (Figures 5.10 and 5.11). These 

areas are located at east and northwest of the Rio Negro basin and occur associated to Podzols 

and Gleysols (Figure 5.1). The RK maps have shown a similar pattern on the lateral 

distribution of SOC stock at the two evaluated soil depths. However the SOC stock at 3m soil 

depth is about twice the one stored at 1m, with averaging values ranging from  
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15 to 19 kg C m-2 in areas of ferralitic soils and 21 to 60 kg C m-2 in the region of 

hydromorphic soils (soil orders are shown in Figure 5.1). The areas of hydromorphic soils of 

Rio Negro basin have a high capacity of storing carbon in superficial organic horizons (A/O 

horizons of Gleysols and Podzols) and in the spodic horizon of Podzols, which explains the 

high amount of carbon stored in hydromorphic soils at the two evaluated soil depths.  

 

 
Figure 5.10 – Predicted SOC stock map according to RK procedure at 1m soil depth. 
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Figure 5.11 – Predicted SOC stock map according to RK procedure at 3m soil depth. 

5.3.2.3. Kriging Models Validation and SOC Stock in Rio Negro Basin 

The best prediction was found at 1m soil depth for the RK method with an adjusted R² 

of 0.85, according to validation dataset (Table 5.5). The obtained R² at the same soil depth for 

the OK method was 0.66. Nevertheless, the validation dataset is more correlated with values 

obtained by OK at 3m soil depth, when compared to RK, with respective R² of 0.76 and 0.61 

(Table 5.5). The close correlation between RK and OK SOC stock maps and the better spatial 

autocorrelation for the RK models, justify the use of RK predicted maps to quantify the SOC 

stock in Rio Negro basin due to a higher level of detail that can be found in RK predicted 

maps when compared to OK maps. 

Table 5.5 – Model performance to predict soil carbon stock (kg C m-2) based on validation dataset. 

 
1m Soil Depth 3m Soil Depth 

Parameters OK RK OK RK 

Adjusted R² 0.66 0.85 0.76 0.61 

MSE 6.23 3.86 25.36 32.04 

RMSE 2.50 1.96 5.04 5.66 
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The average amount of SOC stored in Rio Negro basin soils according to RK 

predicted maps was 9.4±4 kg C m-2 at 1m soil depth and 17.3±7.8 kg C m-2 at 3m soil depth. 

If we consider the SOC stock divided by soil order, the areas of Podzols have the highest 

storage capacity with a relative stock of about 12.2±5.1 kg C m-2 at 1m soil depth and 

24.9±10.8 kg C m-2 at 3m soil depth, whereas in Ferralsols, the SOC stock at 1m and 3m soil 

depths are 11.3±5.3 kg C m-2 and 18.2±7.7 kg C m-2, respectively. In Acrisols the SOC stock 

is 10.5±4.8 kg C m-2 at 1m soil depth and 17.2±8.3 at 3m soil depth. Understanding the spatial 

variability of SOC stock at these soil units is important due to them spatial extension (74% of 

the soils of Rio Negro basin). However, the areas of alluvial soils (Gleysols) have also shown 

a high SOC storage capacity in superficial soil horizons, with an average stock of about 

15.2±6.4 kg C m-2 at 1m soil depth and 21.2±9.8 kg C m-2 at 3m soil depth, which highlights 

the importance of these soils on evaluating the carbon sink capacity of Amazon soil.  

The soils of Rio Negro basin stores about 5.75 Pg of SOC at 1m soil depth and  

10.12 Pg at 3m soil (twice the value found on the first soil meter: Figure 5.12), according to 

RK maps. However, we observed that some areas might have an increment of about 40 kg C 

m-2, from 1m to 3m soil depth, as shown in Figure 5.12. The values obtained by OK 

procedure are similar being about 5.94 Pg at 1m soil and 11.38 Pg at 3m soil depth. Previous 

research developed in this region (MONTES et al., 2011) have found higher values of SOC 

stock in Podzol areas (13.6 Pg). However, these studies have considered the occurrence of 

SOC content in deeper soil horizons. The soil samples provided by IBGE (2008) are limited 

to the first soil meter, which makes it difficult the prediction of SOC stock in soil depths 

below 3m, due to the low availability of soil samples to calibrate the PTF functions. 

Nevertheless, we observed an important increment in SOC stock from 1m to 3m soil depth, 

even considering just the first 3m soil depth (Figure 5.12).  

The most important increment in SOC stock from 1m to 3m soil depth occurs in areas 

of highlands at northwest (Figure 5.12) of the basin, in the areas of Podzols located at east of 

the Rio Negro basin and in the region of giant Podzols of the upper Rio Negro Basin (Figure 

5.12). Different from the other regions, the areas of giant Podzols might have a great amount 

of carbon stored in depths below 3 m. In some cases, a great amount of organic carbon can be 

found in depths up to 11m, which highlights the importance of these soils on the estimation of 

SOC stock at national and continental scale. 
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Figure 5.12 – SOC Stock map obtained by subtracting the 3m soil depth map (Figure 5.11) from the 

1m soil depth map (Figure 5.10). 

If we take into account an average stock of about 80±17.2  kg C m-2 for Podzols at 6m 

soil depth, considering the sampled areas in the frame of this study, the Podzols of Rio Negro 

basin have an absolute SOC stock of 9.19 Pg. Thus, the carbon stored in Podzols at 6m soil 

depth is close to the one stored in the entire region of Rio Negro basin at 3m soil depth, due to 

the typical increasing of SOC content in deep thick spodic horizons, whereas the adjacent 

soils (Ferralsols and Acrisols) have shown a clear exponential decay in SOC stock  from 

surface to deeper soil horizons.  

5.4. Conclusions 

The OK predicted maps are well correlated to validation dataset at 3m soil depth; 

however, it resulted in low correlation at 1m soil depth. On the other hand, the RK maps had 

the opposite behavior with good correlation at 1m soil depth and moderate correlation at 3m 

soil depth. Despite the lower correlation at 3m soil depth, the maps obtained by RK have the 

advantage of representing the lateral variation of the SOC stock in Rio Negro basin with a 

higher level of detail, when compared to OK predicted maps. Besides, the modeled 
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semivariograms had a higher spatial autocorrelation according to RK procedure. Therefore, 

RK is pointed out as an efficient technique to map deep SOC storage in Amazon soils, by 

combining PTF models, regression analysis and kriging of the residuals of the regression. 

Nevertheless, we observed a moderate spatial autocorrelation for the application of spatially 

dependent interpolators (kriging), which is explained, mostly, by lack of soil samples. Thus, 

future researches in this region aiming to apply kriging methods to map SOC stock, depends 

on the availability of a denser pointing cloud (soil samples). 

Few researches have explored the usage of RK techniques to map SOC stock in extensive 

tropical regions, mostly due to the lack of soil samples in such regions. Despite the limitations 

of the IBGE (2008) dataset, it provides more than 1000 soil samples randomly distributed in 

the region of Rio Negro basin. If we extrapolate to the entire region of the Brazilian Amazon 

forest, samples of 3785 soil profiles are provided by IBGE (2008) and its usage to map the 

SOC stock remains undone. Given this, the methods adopted in this research could be used to 

map deep SOC stock in the region of the Amazon forest, with a high level of detail.  

With regards to Amazon Podzols, the proper evaluation of its SOC storage capacity is 

crucial to update current maps of SOC stock in Amazon soils. In the present research, we 

found that all Amazon soils have the capacity of storing an important amount of organic 

carbon on them superficial and sub-superficial, soil horizons. However, we observed a clear 

decay in SOC content from superficial to deep soil horizons in all soils, excluding Podzols. In 

Podzols, the soil horizons below 1m soil depth have an increase in SOC stock when compared 

to the one stored above 1m soil depth. Accordingly, the current measurements based on soil 

superficial horizons up to 0.3m, are insufficient to represent the real amount of SOC stored in 

Podzols. In these soils, we concluded that the SOC stock should be measured at soil depths 

varying from 1 to more than 3m. Moreover, new studies are necessary to evaluate the 

sensibility of those stocks to mineralization, taking into account different future scenarios of 

global climate change.  
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6. GENERAL REMARKS 

In this research we applied remote sensing imagery and field sample data in order to 

quantify and map the soil carbon stock (SOC) in soils of the Rio Negro basin, with special 

attention to Podzols, due to them high capacity of storing organic carbon as soil organic 

matter in deep thick spodic (Bh) horizons. Previous research developed in the same region, 

has found that Podzols might store 86.8 ± 7.1 kg C m−2, which is about three times bigger 

them the SOC stock found in adjacent soils (mostly Acrisols and Ferralsols). However, the 

number of soil samples, the extrapolation methods and the ancillary data used in previous 

studies were insufficient to make precise estimates of SOC stock in the whole area of Rio 

Negro basin, due to the impossibility of estimating associated error and the lack of 

information concerning soil depths below 1m. Therefore, a systematic study was employed 

evolving the quantification of SOC stock at local and regional map scales, as well as at the 

scale of the Rio Negro basin.  

Nowadays, there are no systematic researches in amazon forest concerning the deep 

SOC stock. Thus, most of the surveys are centred in the first soil metre, taking into to account 

the SOC stock that is much more labile in the short term, due to the interaction of the 

superficial and sub-superficial soil horizons with atmosphere. Therefore, the estimates usually 

are limited to the first 0.3m soil depth. The lack of studies concerning deep SOC storage 

capacity is related to a series of factors, notably: (1) the still limited knowledge of the extent 

of different kinds of soil of the world, especially in the tropical regions; (2) the limited 

availability of soil databases; (3) the considerable spatial variation in carbon content, and soil 

bulk density, as well as the complexity to retrieve soil bulk density data; and ultimately, (4) 

the clear effects of climate, relief, parent material, vegetation and land use that are still poorly 

explored. Therefore, in this research we considered the aforementioned points as relevant 

factors on mapping SOC stock at Rio Negro basin map scale.  

In the first and second chapters of the present research, we explored the usage of 

remote sensing images widely available in Amazon region, for mapping soil cover and soil 

orders by correlating remote sensing variables, notably, vegetation spectral signatures, surface 

temperature, topography and soils. We observed that the amount of carbon stored in soils is 

related to environmental aspects such as topography, vegetation type, and soil surface 

moisture. These aspects are the key for spatializing Podzol in Rio Negro basin, evolving map 

scales greater than the one available in current maps of this region.  Thus, new efforts are 



126 

necessary for mapping the soils of Rio Negro basin at regional and local map scales, which 

would allow for a better estimate of the SOC storage capacity of this region.  

In the chapters three and four, we discussed the application of pedotransfers (PTF) 

models and kriging techniques for mapping SOC stock in Rio Negro basin at 1m and 3m soil 

depths. We observed that the combination of PFT function and kriging interpolation was an 

efficient way to estimate the deep SOC stock of Rio Negro basin soils, which resulted in 

systematic SOC stock maps with an unpredicted precision. According to our maps, the Rio 

Negro basin had an absolute SOC stock of about 5.75 Pg at 1m soil depth and 10.12 Pg at 3m 

soil. Nevertheless, the amount of carbon stored in Podzols at 6m soil depth is close to the one 

stored in the entire region of Rio Negro basin at 3m soil depth.  

Previous researches carried out in the year of 2002, have shown that the first 0.3m of 

the Brazilian soils, store about 36.4±3.4 Pg of SOC. According to our research, the area of the 

Rio Negro basin stores about 10 Pg of SOC at 3m soil depth, which represents 27% of the 

SOC stock of Brazil. However, the area of the Rio Negro basin represents 14% of the total 

area of the Brazilian Amazonian basin and just 6.4% of the Brazilian area. Given this, our 

findings highlight the importance of the SOC stock of the Rio Negro basin at national scale, 

with especial attention to Podzol areas. If we extrapolate our estimates to deeper soil horizons 

in areas of Podzols (6m soil depth), these soils would have an absolute SOC stock of 9.19 Pg, 

which represents 25% of the total SOC stock of Brazilian soils at 0.3m soil depth. Even 

thought, the Podzols cover just 1.3% of the total area of Brazil, it has the capability of storing 

one quarter of the total soil carbon of Brazilian soils at surface and sub-superficial soil 

horizons. Given this, the amount of organic carbon stored in Podzols is significantly higher, 

than the one presented in previous systematic researches. Thus, this new estimate lead us to 

the following questions: How sensitive are these SOC stocks to global climate changes? Are 

the deep SOC stock sensible to mineralization, due to changes in soil cover? 

We limited our research to the estimation of the SOC stock in Rio Negro basin, with 

any assumption about the sensibility of these stocks to mineralization, according to future 

changes in the soil hydrological regime. However, unconcluded results obtained by researches 

developed in this area, might suggest that future climate changes, followed by oxygenation in 

superficial and elluvial soil horizons could cause the intensification of microbial activity in 

spodic horizons (Bh) leading to the intensification of CO2 emissions by Podzols. 

Nevertheless, nowadays, the Podzols of Rio Negro basin are protected by a continuous forest 

(Campinarana) and are subject to the highest rainfall rates of Brazil, being around 3000mm 

year-1 in the high Rio Negro basin.  
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We observed some areas of Podzols located at the east region of the Rio Negro basin 

(Roraima State), where the annual rainfall is about 1900 mm year-1. In this region the average 

SOC stock of Podzols, according to our results, is about 8 to 12 kg C m-2, significantly lower 

than the values found in areas of giant Podzols located at the high Rio Negro basin, where the 

stocks are above 60 kg C m-2. The clear difference in SOC stock between those two areas, for 

the same soil type (Podzol), might be an indicative of the high sensibility of the SOC stock of 

Podzols to climate change, assuming a future decreasing in annual rainfall, flowed by the 

oxygenation in spodic horizons. Therefore, future researches focused on the assessment of the 

sensibility of deep SOC stocks of Podzols to mineralization in this region are essential in 

order to understand the effect of the mineralization of these stocks on the greenhouse gases 

emissions.  
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