Universidade de São Paulo Escola Superior de Agricultura "Luiz de Queiroz" Centro de Energia Nuclear na Agricultura

Mapeamento e expressão gênica associada à fase de aquisição de competência organogênica em tomateiro (*Solanum lycopersicum* L. cv Micro-Tom)

Mariana da Silva Azevedo

Dissertação apresentada para obtenção do título de Mestre em Ciências. Área de concentração: Biologia na Agricultura e no Ambiente

Piracicaba 2012

Mariana da Silva Azevedo Bióloga

Mapeamento e expressão gênica associada à fase de aquisição de competência organogênica em tomateiro (*Solanum lycopersicum* L. cv Micro-Tom)

Orientador: Prof. Dr. LÁZARO EUSTÁQUIO PEREIRA PERES

Dissertação apresentada para obtenção do título de Mestre em Ciência. Área de concentração: Biologia na Agricultura e no Ambiente.

Piracicaba 2012

AUTORIZO A DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Dados Internacionais de Catalogação na Publicação (CIP) Seção Técnica de Biblioteca - CENA/USP

Azevedo, Mariana da Silva

Mapeamento e expressão gênica associada à fase de aquisição de competência organogênica em tomateiro (*Solanum lycopersicum* L. cv Micro-Tom) / Mariana da Silva Azevedo; Orientador Lázaro Eustáquio Pereira Peres. - - Piracicaba, 2012. 100 p.: il.

Dissertação (Mestrado – Programa de Pós-Graduação em Ciências. Área de Concentração: Biologia na Agricultura e no Ambiente) – Centro de Energia Nuclear na Agricultura da Universidade de São Paulo.

1. Expressão gênica 2. Mapeamento genético 3. Organogênese vegetal 4. Plantas (Regeneração) 5. Solanaceae I. Título

CDU (601.4:575.116.4): 582.926.2

Dedico este trabalho aos meus pais, pelo incentivo e apoio durante toda esta jornada

AGRADECIMENTOS

Em primeiro lugar agradeço a minha família, principalmente aos meus pais que sempre me apoiaram, incentivaram e são minha referência. Agradeço por todos os anos e por todo o carinho que eles tiveram comigo.

Ao Prof. Dr. Lázaro Peres por ser um orientador exemplar, pela confiança depositada, ensinamentos, compreensão e apoio durante todos estes anos que estive no laboratório.

A Prof^a Dr^a Marie-Anne Van Sluys por ter me recebido tão bem em seu laboratório e pelas sugestões dadas para a realização deste projeto.

Ao Prof. Dr. Antonio Figueira por ter permido que eu utilizasse seu laboratório durante a execução deste projeto.

A FAPESP, pela concessão da bolsa de estudos e pelo apoio financeiro para a realização deste trabalho (Processo nº 2009/13297-6).

Ao CENA, pela oportunidade de realizar o mestrado e a todos os funcionários que me ajudaram muito durante estes 2 anos.

A todos do GaTE lab, Andréa, Andrès, Bruno, Cushla, Danielle, Guilherme, Jonas, Kleber, Mayra, Nathália de Setta, Paula, Tatiana e principalmente a Erika de Jesus, pois sem ela eu não teria conseguido realizar todo este trabalho.

A todos do Laboratório de Melhoramento de Plantas, Aline, Amanda Jesus, André, Deborah, Edgard, Isabela, Joni, Juliana Leles, Layanne, Letícia, Lorena, Mariana Belloti, Marielle, Melissa, Renato, Roberto, Thaísa, Verusca, aos funcionários Inês, Raquel e Wlamir e principalmente a Danielle Scotton e Juliana Deganello por terem me ajudado muito na realização deste projeto.

Aos queridos amigos do Laboratório de Controle Hormonal do Desenvolvimento Vegetal: Cássia por ser esta mãezona e sempre nos salvar, Ivan por toda a ajuda e conselhos, aos mineiros Mateus e João, por toda a paciência para me ouvir quando eu precisava, aos ICs Guilherme e Gabriel por todas as conversas e brincadeiras, a Eloísa e Fernanda por todas as situações engraçadas que passamos juntas, a Maísa e Ariadne por todas as conversas durante os cafés, ao Frederico de Jesus, por toda a ajuda, paciência, conversas e principalmente amizade e ao técnico Vitti por cuidar da casa de vegetação.

Aos amigos que já passaram pelo laboratório: Agustin, Juliana, Fernando, Ricardo, principalmente a Tatiana Bistaco pela amizade, a Simone por ter me ajudado nos primeiros

anos que estive no laboratório e a Lilian Pino por todos os ensinamentos, conversas, congressos, toda a amizade de todos estes anos.

Aos amigos do mestrado, Andres, Maria Letícia, Renata Kaline e principalmente ao Geraldo por toda a ajuda com o RNA.

Aos amigos da Graduação, Aline Bombo, Aline Guidolin, Keini Dressano, Thais Degasperi, Eveline Calderan e Juliana Matos, por estarem sempre presentes, Kátia Cezarino e Luana Amorin por todas as conversas divertidas e Raphael Faria por todo o apoio, conversas e companheirismo durante todos estes anos.

Aos amigos da minha adolescência, Vanessa Manesco, Pedro Baccarin, Mariana Palmeira, Thais Sgasbiero, Raquel Ré, Bianca Facca, Fernanda Gomes e Graziela Sbravatti, que de uma forma ou de outra estão sempre ao meu lado.

A todos que, de alguma maneira, direta ou indiretamente, contribuíram e me incentivaram na realização deste trabalho, muito obrigada!

"As convicções são inimigas mais perigosas da verdade do que as mentiras." (Friedrich Wilhelm Nietzsche)

RESUMO1	1
ABSTRACT1	3
LISTA DE ABREVIATURAS E SIGLAS	5
1 INTRODUÇÃO1	7
2 REVISÃO BIBLIOGRÁFICA2	1
2.1 O processo da organogênese <i>in vitro</i>	1
2.2 O funcionamento dos meristemas	3
2.3 Fatores de transcrição GRAS2	5
2.4 Objetivos	8
3 MATERIAL E MÉTODOS	9
3.1 Material vegetal e condições de cultivo em casa de vegetação	9
3.2 Cultivo <i>in vitro</i> dos explantes	0
3.3 Extração de DNA genômico	1
3.4 Reações de PCR e digestão dos marcadores selecionados	2
3.5 Extração de RNA	3
3.6 Estudo dos perfis transcricionais por RNA-Seq na plataforma SOLiD 3	3
3.7 Desenho dos iniciadores	4
3.8 Análises por qRT-PCR	4
3.9 Análises <i>in silico</i>	5
4 RESULTADOS E DISCUSSÃO	7
4.1 Rg1 Aumenta a capacidade de regeneração atuando na fase de aquisição d	le
competência	7
4.2 Obtenção de plantas recombinantes	0
4.3 Avaliação da capacidade de formação de gemas caulinares e raízes in vitro dos possíves	is
recombinantes	1
4.4 Uso de marcadores moleculares para mapeamento genético4	5
4.5 Estudo dos perfis transcricionais por RNA-Seq na plataforma SOLiD 36	0
4.6 Análise dos Genes Diferencialmente Expressos por qRT-PCR	5
4.7 Análise filogenética da família de fatores de transcrição GRAS7	9
5 CONCLUSÕES	5
REFERÊNCIAS	7

SUMÁRIO

RESUMO

AZEVEDO, Mariana da Silva. **Mapeamento e expressão gênica associada à fase de aquisição de competência organogênica em tomateiro** (*Solanum lycopersicum* L. cv **Micro-Tom**). 2011. 100 f. Disseratação (Mestrado em Ciências) – Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 2012.

Dentre os fatores relacionados à capacidade superior de regeneração in vitro de Solanum peruvianum, está a presença do alelo dominante Rg1. O gene RG1, envolvido na formação de gemas caulinares a partir de raízes e outros explantes, foi mapeado no cromossomo 3 entre os genes BETA-CAROTENE HYDROXYLASE (CrtR-b) e PHYTOENE SYNTHASE (PSY1). Variações alélicas também são conhecidas para genes CrtR-b e PSY1. white flower (wf) é o alelo de CrtR-b que produz pétalas brancas e yellow flesh (r) é o alelo de *PSY1* que produz frutos amarelos. Os alelos $wf \in Rg1$ com r foram introgredidos na cultivar Micro-Tom (Solanum lycopersicum L). Através da transferência sequencial de explantes de SIM para MB e de RIM para SIM, verificou-se que MT-Rg1 reduz o tempo necessário para a indução de gemas em um dia (6 dias em SIM para MT), devido a redução no tempo necessário para a aquisição de competência em um dia (2 dias para MT). Foram obtidos 30 possiveis recombinantes advindos do cruzamento Rg1/rg1 Wf/wf x rg1/rg1 wf/wf, baseados nas características de pétala branca (efeito do alelo wf) e maior ramificação (efeito do alelo Rg1). Todos os possíveis recombinantes foram testados in vitro quanto à capacidade de formar gemas caulinares em SIM e raízes em RIM. Com isso, 7 linhagens recombinantes foram confirmadas e utilizadas para o mapeamento fino da região na qual o gene RG1 está localizado no cromossomo 3. Para o mapeamento foram testados marcadores do tipo CAPS e SCAR, sendo utilizado o DNA genômico extraído de S. pennellii, S. peruvianum, Micro-MsK, MT, MT-Rg1, MT-wf e das 7 linhagens recombinantes, constatando-se que alguns marcadores moleculares desenhados para S. pennellii podem ser utilizados para S. peruvianum. Estas análises também evidenciaram que o segmento de introgressão de MT-Rg1 está entre o marcador P5 e o gene CrtR-b, totalizando 136 genes, entre os quais GRAS 10 destacou-se como principal candidato para a função gênica de Rg1. Complementarmente, foi realizada a análise de RNA-Seq (plataforma SOLiD) para a identificação de genes diferencialmente expressos entre MT e MT-Rg1. Com isso, observou-se que existem mais genes regulados negativamente do que positivamente durante a aquisição de competência. Devido ao grande número de genes diferencialmente expressos, alguns parâmetros foram utilizados para classificar os genes que poderiam ser quantificados por qRT-PCR em um experimento de regeneração in vitro. Entre os 361 genes classificados, 5 foram selecionados para a quantificação de sua expressão. Destes 5 genes, GRAS 10 e Serine/threonine protein phosphatase 7 foram os que apresentaram-se mais positivamente expressos e aparentemente são os que estão mais intimamente ligados a fase de aquisição de competência. Como existem muitos genes GRAS, foi feita uma árvore filogenética para posicioná-lo e identificar genes homólogos a ele. Com base na análise filogenética foi possível identificar o gene GRAS 10 como homológo ao gene SCL8 já identificado em Arabidopsis. Porém, pouco se sabe a respeito de SCL8. Desse modo, ainda é necessário confirmar a identidade do gene RG1, o que possibilitará a compreensão do processo de aquisição de competência.

Palavras-chave: RG1; Regeneração; Organogênese; Mapeamento

ABSTRACT

AZEVEDO, Mariana da Silva. **Mapeamento e expressão gênica associada à fase de aquisição de competência organogênica em tomateiro** (*Solanum lycopersicum* L. cv **Micro-Tom**). 2011. 100 f. Disseratação (Mestrado em Ciências) – Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 2012.

The dominat allele Rg1 is related to the greater in vitro regeneration capacity of Solanum peruvianum L. The Rg1 gene is required for shoot formation from roots and others explants and was mapped on chromosome 3 between BETA-CAROTENE HYDROXYLASE (CrtR-b) and PHYTOENE SYNTHASE (PSY1) genes. Allelic variants are also known for the genes CrtR-b and PSY1. white flower (wf) is the allele of CrtR-b that produces white petals and yellow flesh (r) is the allele of PSY1 that produces yellow fruits. The alleles wf and Rg1with r were introgressed into the Micro-Tom cultivar (Solanum lycopersicum L). Through the sequential transfer of explants from SIM to BM and RIM to SIM, we found that MT-Rg1 reduces the time required for the induction of shoots in one day (6 days on SIM for MT), due the reduction of the time required for competence acquisition in one day (2 days to MT). It was obtained 30 putative recombinants from crossing Rg1/rg1 Wf/wf x rg1/rg1 wf/wf. The recombinant lines were scored based on the presence of white petals (wf allele's effect) and increased shoot branching (Rg1 allele's effect). All putative recombinant lines were tested in vitro for their capability to form shoots in SIM and roots in RIM. Thus, 7 recombinant lines were selected and used to fine mapping the region where RG1 gene is located. CAPS and SCAR markers designed to S. pennellii were tested to fine-mapping, using as template genomic DNA samples from S. pennellii, S. peruvianum, Micro-MsK, MT, MT-Rg1, MT-wf and the 7 recombinant lines. These results confirmed that the molecular markers designed for S. pennellii can be successfully used for S. peruvianum. These analyzes also suggest that the introgressed segment of MT-Rg1 is located between the P5 marker and the CrtR-b gene. Within this region, there are 136 genes, including the GRAS 10 gene which is the main candidate to RG1 gene function. In addition, we performed RNA-Seq analysis (SOLiD platform) to identify genes differentially expressed in MT and MT-Rg1. It was observed more down-regulated than up-regulated genes in the competence acquisition stage. Due to the large number of differentially expressed genes, some parameters were used for selection of genes that would have their expression validated by qRT-PCR in an in vitro regeneration test. Five genes among 361 genes differentially expressed were selected to test their expression. Of these 5 genes, GRAS 10 and Serine / threonine protein phosphatase 7 were the most up-regulate genes and showed to be closely related to the stage of competence acquisition. Since there are many GRAS genes, we performed a phylogenetic analysis to identify homologous genes. Based on the phylogenetic analysis, GRAS 10 was identified as homologous to SCL8, a gene already identified in Arabidopsis. However, little is known about SCL8. Thus, it is still necessary to confirm the RG1 gene identity. This approach will provide a better understanding of competence acquisition process.

Keywords RG1; Regeneration; Organogenesis; Mapping

LISTA DE ABREVIATURAS

ANA = ácido α -naftalenoacético BAP = 6-benzilaminopurina BM = Basal Medium gib1 = gibberellin deficient1 *gib2* = *gibberellin deficient2 gib3* = *gibberellin deficient3 ls* = *lateral supresser* MB = meio basalMS = Murashige & Skoog MT = Micro-Tompro = procera r = yellow fleshRIM = Root Inducer Medium SIM = Shoot Inducer Medium U = unidade*wf* = *white flower*

1 INTRODUÇÃO

Os avanços na pesquisa hormonal e na bioquímica do DNA possibilitaram a manipulação das características genéticas de plantas de modo específico. Dentre os procedimentos mais importantes na biotecnologia de plantas está a cultura de tecidos (KERBAUY, 1999). O sucesso de programas de transformação de genes depende da capacidade de regeneração das espécies em estudo, podendo a própria capacidade de regeneração in vitro virar alvo do melhoramento (FERREIRA; CALDAS; PEREIRA, 1998; KOORNNEEF et al., 1986; LIMA et al., 2004).

Muitas vezes, as diferenças na capacidade de regeneração das espécies vegetais podem ser controladas por poucos genes (FARIA; ILLG, 1996; KOORNNEEF; HANHART; MARTINELLI, 1987). No caso do tomateiro, a espécie *Solanum peruvianum* L. em geral possui capacidade de regeneração superior ao tomateiro cultivado (*Solanum lycopersicum* L Syn *Lycopersicon esculentum* Mill.). Essa capacidade foi considerada como sendo controlada por dois genes cujos alelos dominantes de *S. peruvianum* são denominados Rg1 e Rg2(KOORNNEEF; HANHART; MARTINELLI, 1987). Contudo, a presença de apenas um desses alelos, Rg1, é suficiente para conferir a capacidade para regeneração de gemas caulinares a partir de explantes radiculares (KOORNNEEF et al., 1993) e de *hairy roots* transgênicas (PERES et al., 2001). É interessante notar que somente um reduzido número de espécies selvagens de *Solanum* seção *Lycopersicum* possui capacidade de regeneração a partir de explantes radiculares, sendo que essa característica parece ser ausente no tomateiro cultivado (PERES et al., 2001).

O gene *RG1*, necessário para a formação de gemas caulinares a partir de raízes, foi mapeado no cromossomo 3 (KOORNNEEF et al., 1993), próximo do *locus* no qual está localizado um gene para biosíntese de carotenóides específico de frutos (fiteno sintase ou *PSY1*, FRAY; GRIERSON, 1993). O gene *PSY1* possui um alelo recessivo denominado *yellow flesh* (*r*), o qual está presente nas espécies de fruto verde quando maduro (e. g. *S. peruvianum*) e confere uma cor amarela do fruto quando introgredido no tomateiro cultivado. Desse modo, em cruzamentos entre tomateiro cultivado e *S. peruvianum*, a alta capacidade de formação de gemas caulinares *in vitro* co-segrega com o fruto amarelo (KOORNNEEF et al. 1993; LIMA et al., 2004), sendo que a baixa capacidade de regeneração observada em boa parte das cultivares de tomateiro, quando comparadas com as espécies selvagens de fruto verde (PERES et al., 2001), pode estar relacionada com a seleção por frutos vermelhos em todos os cruzamentos onde se buscou incorporar características favoráveis das espécies

selvagens. No cromossomo 3, próximo ao gene *RG1*, também foi mapeado por Koornneef et al. (1993) o gene *CrtR-b*, cujo alelo mutato, *wf*, produz pétalas brancas.

A cultivar miniatura de tomateiro MT pode ser cultivada nas mesmas condições requeridas para Arabidopsis (EMMANUEL; LEVY, 2002), pois possui porte pequeno e produz frutos maduros em 70-90 dias. Devido a estas facilidades em estudos utilizando-se esse modelo, o alelo Rg1 foi introgredido em MT (LOMBARDI, 2008; PINO et al. 2010). A transferência de Rg1, e possivelmente de Rg2, de S. peruvianum para tomateiro por Koornneef et al. (1986) resultou na criação do genótipo MsK. Em nosso laboratório, após o cruzamento de MsK com Micro-Tom e 8 gerações de autofecundação e seleção (F8), Lima et al. (2004) obteve Micro-MsK, que combina a alta capacidade de regeneração de MsK e o nanismo de MT, embora não seja isogênico a MT. Partindo-se de Micro-MsK, Lombardi (2008) obteve MT-Rg1, através de 6 retrocruzamentos sucessivos, o qual é quase isogênico a MT, permitindo que os efeitos causados pelo alelo Rg1 pudessem ser comparadas com os efeitos do alelo rg1, encontrado em MT. Com isso, foi identificado que as plantas com o alelo Rgl apresentaram também alterações no desenvolvimento que resultaram em algumas características fenotípicas. Entre estas características estão: maior ramificação caulinar, tendência a policotiledonia, sistema radicular mais desenvolvido e uma tendência ao engrossamento da base dos pecíolos, que parece ser a consequência de um maior número de células, principalmente na superfície adaxial deste órgão (LOMBARDI, 2008). Este maior número de células pode estar influenciando o aumento da taxa de regeneração de MT-Rg1, pois este dado sugere que o alelo Rgl seria capaz de manter por mais tempo os tecidos meristemáticos (LOMBARDI, 2008).

Apesar de se ter bem claro a importância do balanço auxina/citocinina aplicado ao meio de cultura na fase de indução de organogênese (SKOOG; MILLER, 1957), pouco estudos foram realizados no sentido de se investigar o papel do balanço hormonal endógeno dessas classes hormonais no explante durante a organogênese (PERES et al., 1999; PERES; KERBAUY, 1999). Esse conhecimento faz-se relevante, pois, em última análise, os processos organogênicos são reflexos diretos do balanço endógeno auxina/citocinina sendo as quantidades aplicadas ao meio de cultura apenas uma indicação indireta disso. Desse modo, uma das possíveis causas da falha em se conseguir organogênese *in vitro* pode ser devido a não obtenção desse balanço endógeno devido ao metabolismo hormonal desfavorável do explante ou à baixa sensibilidade a essas classes hormonais durante a fase de indução (PERES, 2002). Com isso, mutantes que aumentariam a capacidade de regeneração de gemas caulinares poderiam estar relacionados ao aumento do nível endógeno de citocinina. Embora,

estudos mostrem que *Rg1* aumenta a formação de gemas tanto em explantes cotiledonares (LIMA et al., 2004; LIMA et al., 2009), quanto hipocotiledonares (LOMBARDI, 2008) ou de raízes (KOORNNEEF et al., 1986), sabe-se que isto não ocorre devido ao aumento do nível endógeno de citocinina (BOITEN et al., 2004) ou o aumento da sensibilidade a este hormônio (LOMBARDI, 2008).

Por outro lado, ao realizar testes de regeneração *in vitro*, Lombardi (2008) verificou que Rg1 é capaz de reverter a baixa capacidade de formação de gemas caulinares em explantes cotiledonares de dgt (*diageotropica*), que tem baixa sensibilidade a auxina (OH et al., 2006), e pro (procera) que tem resposta constitutiva a giberelina (JASINSKI et al., 2008), nos duplos mutantes dgtRg1 e proRg1. As relações entre Rg1 e o aumento da regeneração, bem como sua interação com o hormônio auxina, também foram apresentadas por Lima et al. (2009) ao estudar o efeito da sensibilidade à auxina e ao etileno na formação de gemas, calos e *hairy root* em tomateiro.

Outro importante dado relacionado à capacidade de regeneração de Rg1 é que enquanto o envelhecimento dos cotilédones utilizados para experimentos de regeneração *in vitro* reduz a capacidade de formação de gemas em MT, Rg1 não sofre esta redução, sugerindo que Rg1 tem células pouco comprometidas (PINO et al., 2010), aumentando a regeneração a partir de explantes radiculares (KOORNNEEF et al., 1993), cotiledonares (LIMA, 2004), e hipocotiledonares (LOMBARDI, 2008).

Os genes *KNOX* são proteínas reguladoras de transcrição importantes para que células meristemáticas se mantenham em um estado indeterminado (SINHA; WILLIAMS; HAKE, 1993), sendo que diferentes balanços na expressão desses genes podem explicar as diferenças no padrão de recorte das folhas de certos mutantes de tomateiro (KIM et al., 2003). Desse modo, uma expressão prolongada de genes *KNOX* garantiria uma maior manutenção de células meristemáticas, formando folhas mais recortadas e, em casos extremos, com mais folíolos. Uma explicação para isto é o fato destes genes estarem relacionados com baixos níveis de giberelina (SAKAMOTO et al., 2001; TANAKA-UEGUCHI et al., 1998), além de altos níveis de citocinina (ORI et al., 1999). Entretanto, ao analisar duplos mutantes de *ls* (*lateral supressor*) com *Rg1* e *Me* (*Mouse ears* – superexpressão de um gene do tipo *KNOX*), Lombardi (2008) observou resultados antagônicos, sendo *ls* epistático a *Me* e *Rg1* epistático a *ls*, ao analisar o índice de ramificação dos mutantes e duplos mutantes. Esses resultados sugerem que *Rg1* pode ser uma nova classe de genes regulatórios diferente da classe dos genes *KNOX*.

O presente trabalho teve a proposta de analisar a participação do alelo Rg1 no processo de regeneração *in vitro*, evidenciando sua importância na etapa da aquisição de competência. Além disso, foram obtidos recombinantes entre MT-Rg1 e MT-wf, ambos mapeados no cromossomo 3, com o intuito de utilizá-los em análise de polimorfismo utilizando marcadores moleculares baseados em PCR (CAPs e SCAR) para o mapeamento fino da região cromossômica na qual Rg1 está localizado. Além disso, também foram feitos estudos com RNA-seq (plataforma SOLiD) e qRT-PCR comparando MT com MT-Rg1 para identificar os genes diferencialmente expressos em pontos-chave para o aumento da capacidade de regeneração *in vitro* de Rg1. A integração das informações sobre os genes diferencialmente expressos em Rg1 e seu mapeamento fino pôde sugerir genes de função conhecida e de mesma posição cromossômica, sendo selecionado como principal candidato, entre os 136 genes obtidos pelo mapeamento fino, o gene *GRAS10*.

2 REVISÃO BIBLIOGRÁFICA

2.1 O processo da organogênese in vitro

Os primeiros estudos envolvendo o cultivo *in vitro* de células vegetais foram iniciados no início do século XX e deste então vários avanços tem sido observados, como a descoberta da importância dos hormônios vegetais no controle da formação de um novo órgão (SKOOG; MILLER, 1957) e a aplicação prática desta técnica, que atualmente tem sido muito importante para a pesquisa em biotecnologia, trazendo avanços na regeneração de diferentes tipos de explantes para a obtenção de plantas transgênicas (TORRES; CALDAS; BUSO, 1998). A maioria dos protocolos para regeneração de plantas tem sido desenvolvida através de testes empíricos variando-se principalmente a proporção de diferentes classes hormonais aplicadas ao meio de cultura, sendo o balanço auxina/citocinina responsável pela formação de raízes e gemas (SKOOG; MILLER, 1957). Segundo Skoog e Miller (1957), um balanço favorável a auxina levaria a formação de raízes, enquanto um balanço favorável a citocinina levaria a formação de gemas e um balanço intermediário, a formação de calos em tabaco (*Nicotiana tabacum*).

Porém, poucos estudos foram realizados no sentido de se investigar o papel do balanço hormonal endógeno dessas classes hormonais no explante durante a organogênese (PERES et al., 1999; PERES; KERBAUY, 1999). Esse conhecimento se faz relevante, pois, em última análise, os processos organogênicos são reflexos diretos do balanço endógeno auxina/citocinina sendo as quantidades aplicadas ao meio de cultura apenas uma indicação indireta disso. Desse modo, uma das possíveis causas da falha em se conseguir organogênese *in vitro* pode ser devido a não obtenção desse balanço endógeno devido ao metabolismo hormonal desfavorável do explante ou à baixa sensibilidade a essas classes hormonais durante a fase de indução (PERES, 2002). O uso de mutantes nessas classes hormonais com alterações no metabolismo e/ou sensibilidade a hormônios vegetais são exemplos de abordagens genéticas e fisiológicas para o estudo da capacidade organogênica *in vitro* (LOMBARDI, 2008; PINO et al., 2010).

De acordo com Christianson & Warnick (1883; 1988) o processo de organogênese *in vitro* (formação de caules ou raízes) pode ser dividido em etapas, sendo as 3 principais a aquisição de competência, a indução e a determinação. Durante a aquisição de competência as células, que já passaram pela fase de rediferenciação, se tornaram capazes de assumir uma nova via de desenvolvimento. Na indução, a regeneração das células torna-se específica de

acordo com a composição hormonal do meio de cultura e durante a determinação os tecidos formam um meristema funcional e se desenvolvem em raízes ou gemas caulinares, independente dos hormônios exógenos. Esta divisão permitiu aos autores postularem que a não obtenção da regeneração de plantas *in vitro* seria atribuída, na maioria dos casos, à falha do explante em adquirir a competência necessária para a indução do processo. Contudo, pouco se conhece, até o momento, sobre os mecanismos envolvidos na aquisição de competência para organogênese (KERBAUY, 1999), apesar de sua extensa utilização em processos biotecnológicos.

Apenas três mutantes relacionados à aquisição de competência são encontrados em Arabidopsis, irel (increase organ regeneration1), um mutante que aumenta especificamente a competência (CARY et al., 2001), srd2 e srd3, dois mutantes que diminuem esta capacidade (YASUTANI et al., 1994). O gene IRE é um regulador negativo da aquisição de competência, que reprime o programa de regeneração de gemas caulinares e raízes. Como a mutação desse gene implica na perda de função (irel), não há mais a regulação negativa da aquisição de competencia, fazendo com que o mutante tenha maior capacidade de regeneração em comparação ao tipo selvagem (CARY et al., 2001). Por outro lado, os mutantes srd (srd1-3) foram selecionados por serem defectivos na rediferenciação caulinar em Arabidopsis (YASUTANI et al., 1994), baseando-se na alteração da via de regeneração de gemas e raízes em cultura de tecidos. Estudos posteriores determinaram o estágio em que as mutações bloqueavam a regeneração caulinar ou radicular utilizando-se uma série de experimentos variando-se a temperatura (SUGIYAMA, 1999). Desta forma, foi proposto que o mutante srd2 age preocemente na aquisição de competência, bloqueando o desenvolvimento tanto de gemas quanto raízes, enquanto o mutante srd3 age tardiamente, especificamente bloqueando o desenvolvimento de caules e não raízes (SUGIYAMA, 1999). Características fenotípicas do mutante srd2 sugerem que o gene SRD2 atua no controlo da competência na proliferação celular (SUGIYAMA, 2000) e a clonagem do gene SRD2 mostrou que ele codifica uma proteína que possui homologia significativa com a proteína humana SNAP50, o que sugere sua possível função na transcrição de snRNA (OHTANI; SUGIYAMA, 2005).

Embora para Christianson e Warnick (1985) a competência necessária para a indução de gemas caulinares fosse distinta daquela para indução de raízes, estudos anatômicos clássicos (BONNET Jr; TORREY, 1966) e estudos atuais envolvendo análise de expressão gênica (ATTA et al., 2009; SUGIMOTO; JIAO; MEYEROWITZ, 2010) têm sugerido que o início da organogênese e aquisição de competência seguem uma via comum. Estudos recentes também sugerem que todo tecido capaz de regenerar *in vitro*, incluindo cotilédones, pétalas,

calos e raízes, na verdade possuem uma população de células preexistentes de identidade semelhante ao periciclo (SUGIMOTO; JIAO; MEYEROWITZ, 2010; SUGIMOTO; GORDON; MEYEROWITZ, 2011). Outra discussão atual são as chamadas "stem cells", que são células indiferenciadas em plantas (DUCLERCQ et al., 2011), porém não se sabe ao certo se estas células seriam necessárias à formação de novos órgãos em explantes. A ligação entre capacidade de regeneração e "stem cells" pouco diferenciadas é também intuitiva, já que quanto maior for o comprometimento (determinação) de um explante para uma via particular de desenvolvimento, menor será sua competência para assumir outra via envolvida na formação de um órgão distinto (LOMBARDI-CRESTANA et al. 2012).

2.2 O funcionamento dos meristemas

Dentre os fatores que tornam importante o estudo de células meristemáticas para a organogênese *in vitro* está o fato de diversos estudos corroborarem com a idéia de que as células necessárias a organogênese em um explante possuem identidade similar àquelas presentes nos meristemas, já que a formação desse tecido é prévia à formação de um órgão (CHRISTIANSON; WARNICK, 1988; HICKS, 1994). Ao analisarmos os meristemas caulinares e radiculares, verificamos a importância de se manter um balanço entre células que se diferenciam para manutenção ou formação de novos órgãos e aquelas cuja diferenciação é reprimida para que continuem como fonte, ou matéria prima, para futuras diferenciações e crescimento contínuo de órgãos (BAURLE; LAUX, 2003). O segundo tipo de células citadas é denominado atualmente como "stem cells" (LAUX, 2003), porém ainda não está claro se este grupo de células seria necessário a formação de novos órgãos em explantes, embora essa idéia esteja implicitamente difundida atualmente (DUCLERCQ et al., 2011).

Outra discussão levantada é se as células capazes de formar novos órgãos estariam pré-existentes nos explantes ou seriam formadas posteriormente, levando a necessidade de uma desdiferenciação e formação *de novo* de células capazes de se dividirem e formar meristemas (CHRISTIANSON; WARNICK, 1988; DE KLERK et al., 1997). Por outro lado, estudos recentes sugerem que todo tecido capaz de regenerar *in vitro*, incluindo cotilédones, pétalas, calos e raízes, na verdade possui uma população de células preexistentes de identidade semelhante ao periciclo (SUGIMOTO; JIAO; MEYEROWITZ, 2010; SUGIMOTO; GORDON; MEYEROWITZ, 2011). Devido a esta semelhança, também se tornou importante o estudo dos genes responsáveis pela manutenção do meristema apical, pois a expressão seletiva de genes necessários para reprimir uma diferenciação celular intensa ou

manter as células em um estado pouco diferenciado ocorre de modo semelhante ao que tem sido proposto para a manutenção de células meristemáticas iniciais (SCHOOF et al., 2000) e derivadas (LENHARD et al., 2002) nos caules.

Dentre os genes responsáveis pela manutenção de células meristemáticas iniciais ("stem cells") e derivadas no meristema apical caulinar (SAM) estão os genes WUSCHEL (WUS), CLAVATA3 (CLV3) e os genes do tipo KNOX, como SHOOT MERISTEMLESS (STM). A atuação destes diferentes genes está representada no esquema elaborado por Rodrigues e Kerbauy (2009), observado na Figura 1. Segundo o modelo proposto para Arabidopsis, a expressão do gene WUS na região do centro organizador mantém células iniciais, as quais marcam o local de expressão do gene CLV3, o qual, por sua vez, é um regulador negativo de WUS. Fora do domínio de expressão de WUS, as células se tornam derivadas, mas são mantidas nesse estágio meristemático pela expressão de genes do tipo KNOX. Os genes KNOX agem através do controle do nível endógeno de giberelinas (GA) e são reprimidos por ASYMMETRIC LEAVES (AS), que permite a diferenciação de parte das células derivadas. Já nas regiões dos limites meristemáticos, os fatores de transcrição do tipo NAC, como CUPSHAPEDCOTYLEDON 1 e 2 (CUC1/CUC2), inibem localmente a proliferação celular e contribuem para o estabelecimento das fronteiras meristemáticas para organogênese, promovendo separação morfológica de órgãos laterais através da repressão do crescimento (AINDA; ISHIDA; TASAKA, 1997; AIDA; TASAKA 2006). CUC1-2 também promovem a formação do meristema, pois ambos são redundantemente necessários para a expressão de STM na formação do meristema apical (AINDA; ISHIDA; TASAKA, 1997).

A correlação da capacidade de indução de gemas caulinares com a expressão de genes que controlam a resposta a citocinina ou a identidade do meristema caulinar, como os genes *ARABIDOPSIS RESPONSE REGULATOR5 (ARR5), SHOOTMERISTEMLESS (STM)*, e *WUSCHEL (WUS)* já foi comprovada (CARY; CHE; HOWELL, 2002; CHE; LALL; HOWELL; 2006; CHE et al., 2007; GALLOIS et al., 2002), porém, estes genes parecem controlar a fase de indução. Por outro lado, alguns fatores de transcrição importantes para a fase da indução são homeoboxes (*STM* e *WUS*), os quais são responsáveis em manter células em um estado pouco diferenciado, como ocorre nos ápices caulinares (LENHARD; JÜRGENS; LAUX, 2002; SCHOOF et al., 2000; SINHA; WILLIAMS; HAKE, 1993), o que poderia indicar que estes fatores de transcrição estariam ligados a competência celular, embora sua expressão não seja encontrada em raízes (SMITH et al, 1995). Outro importante gene é *CUP SHAPED COTYLEDON2 (CUC2)*, o qual é expresso previamente aos genes *WUS* e *STM* (GORDON *et al.*, 2007). O gene *CUC2*, cujo homólogo em tomateiro é *GOBLET* (BERGER *et al.*, 2009), serve como marcador dos locais onde haverá formação tanto de gemas caulinares *in vitro*, quanto de primórdios de raízes laterais (MOTTE et al., 2011), sendo um candidato a controlar especificamente a fase de aquisição de competência.

Figura 1 – Esquema elaborado por Rodrigues e Kerbauy (2009). Diagrama simplificado de um ápice caulinar, mostrando os padrões de localização e interação dos principais elementos que asseguram a organização e a manutenção da atividade do meristema apical caulinar (SAM). Flechas indicam regulação positiva e barras em T indicam regulação negativa. P1, P2 e P3 indicam os primórdios foliares em ordem temporal de formação. O fator de transcrição WUS (WUSCHEL) atua em conjunto com as proteínas CLAVATA 1, 2 e 3 (CLVs 1, 2 e 3) no controle do nicho de células-tronco. SHOOTMERISTEMLESS (STM), por sua vez, atua juntamente às citocininas (CKs) e giberelinas (GA) na região de elevada taxa mitótica do MAC, estabelecendo um balanço entre estas classes hormonais favorável às CKs. Na região de iniciação dos primórdios foliares verifica-se a predominância de GA e AIA (ácido indolilacético, a principal auxina de ocorrência natural), assim como é separada do MAC pela expressão dos genes CUP-SHAPED COTYLEDON 1 e 2 (CUC1/CUC2). ASYMMETRIC LEAVES1 e 2 (AS1/AS2) atuam em conjunto na região periférica do MAC onde ocorre alongamento e/ou diferenciação celular.

2.3 Fatores de transcrição GRAS

Estudos de genética molecular em várias espécies de plantas têm demonstrado que as proteínas *GRAS* atuam como fatores de transcrição e desempenham vários papéis em processos fundamentais do desenvolvimento das plantas, incluindo a transdução de sinais de giberelina (PENG et al., 1997; SILVERSTONE; CIAMPAGLIO; SUN, 1998) e fitocromo A (BOLLE; KONCZ; CHUA, 2000), o padrão radial das raízes (DI LAURENZIO et al., 1996; HELARIUTTA et al., 2000), a gametogênese (MOROHASHI et al., 2003), respostas a estresse abiótico (FODE et al., 2008), manutenção da indeterminação do órgão

(STUURMAN; JAGGI; KUHLEMEIER; 2002; ENGSTROM et al., 2011), iniciação do meristema apical (SCHUMACHER et al., 1999; TONG et al., 2009;), bem como em interações simbióticas (KALO et al., 2005; SMIT et al., 2005) e na regulação das respostas de defesa em plantas (BONSHTIEN et al., 2005; DAY et al., 2003; MAYROSE et al., 2006; MYSORE et al., 2002; SCHMIDT et al., 2005; VANDENABEELe et al., 2003).

Proteínas *GRAS* exibem considerável homologia de sequência na extremidade Cterminal, onde vários domínios distintivos estão localizados (PYSH et al., 1999; TIAN et al., 2004). Por outro lado, as sequências de aminoácidos são altamente variáveis na extremidade N-terminal, sugerindo que esta região é responsável pela especificidade das suas funções biológicas (TIAN et al., 2004). O nome da família deriva dos primeiros três genes *GRAS* funcionalmente caracterizados: *GAI*, *RGA* e *SCR* (DI LAURENZIO et al., 1996; PENG et al., 1997; SILVERSTONE et al., 1998), sendo o gene *SCARECROW* (*SCR*) isolado a partir da seleção de mutantes que afetam o desenvolvimento das raízes (BENFEY et al., 1993).

SCR atua no estabelecimento do eixo radial (centro periférico) na raiz e no hipocótilo durante a embriogênese, sendo necessário também para a manutenção do padrão radial durante o desenvolvimento pós-embrionário (DI LAURENZIO et al., 1996). Isto ocorre porque *SCR* é o primeiro gene expresso nas células precursoras do centro quiescente durante a embriogénese (WYSOCKA-DILLER et al 2000). Mutantes *scr* foram selecionados em *Arabidopsis* através do crescimento lento de suas raízes, as quais possuíam uma única camada do tecido fundamental e agravitropismo, devido a ausência da bainha amilífera (DI LAURENZIO et al., 1996). Em mutantes *scr-1*, a divisão celular assimétrica das células do córtex inicial/endoderme não ocorre, resultando numa camada única célula com identidade mista (DI LAURENZIO et al 1996.), pois a expressão de *SCR* nas células do centro quiescente é necessária para a identidade das células autonomas no mesmo (SABATINI et al., 2003). Aparentemente, a ação de *SCR* no centro quiescente resulta na produção de sinais ainda não identificados para manter as células-tronco vizinhas (SABATINI et al., 2003; VAN DEN BERG et al., 1997).

Várias análises filogenéticas independentes de proteínas GRAS revelaram árvores genealógicas de estrutura semelhante com dez subfamílias que foram nomeadas após a descoberta de um de seus membros ou depois da descoberta de um motivo comum, sendo elas: *AtLAS (LATERAL SUPRESSOR Arabidopsis)*, *AtSCL (SCR-like Arabidopsis)*, *HAM (HAIRY MERISTEM)*, *AtSCR (SCR Arabidopsis)*, *DLT (DWARF AND LOW TILLERING)*, *AtSCL3, DELLA, AtPAT1 (pat Arabidopsis]*, *AtSHR (SHORTROOT Arabidopsis)* e *LISCL (SCR-like Lilium longiflorum)* (BOLLE, 2004; LIM et al, 2005; SUN et al, 2011;. TIAN et al,

2004). Uma breve descrição destas 10 subfamílias pode ser encontrada na Tabela 1 (SUN; JONES; RIKKERINK, 2012), onde são mostradas as diferentes funções biológicas de cada uma delas.

Subfamília	Proteínas	Funções	Referências
DELLA	AtGAI, AtRGA, AtRGL1, AtRGL2, AtRGL3, SLR1, StRGA, Rht1, ZmD8, SLN1	Repressor de genes responsivos a GA, co-ativador transcripcional de PIFs, intregração de sinais regulatórios e ambientais	Achard et al., 2006; Arnaud et al., 2010; de Lucas et al., 2008; Feng et al., 2008; Fu et al., 2002; Hirano et al., 2010; Hou et al., 2010; Hussain; Cao; Peng, 2007; Hussain et al., 2005; Itoh et al., 2005; Murase et al., 2008; Peng et al., 1997; Sheerin et al., 2011; Sun et al., 2010; Sun; Gubler, 2004
AtSCR	AtSCR, OsSCR1, ZmSCR	Crescimento e padrão radial de raízes, identidade do centro quiescente, divisão celular assimétrica	Cui et al., 2007; Gallagher; Benfey, 2009; Kamiya et al., 2003; Lim et al., 2000; Sabatini et al., 2003
AtSHR	AtSHR, OsSHR1, OsSHR2, MtNSP1	Crescimento e padrão radial de raízes, divisão celular e diferenciação da endoderme, fator de transcrição para o desenvolvimento de nódulos	Cui et al., 2007; Gallagher; Benfey, 2009; Helariutta et al., 2000; Hirsch et al., 2009; Nakajima et al., 2001; Smit et al., 2005
AtSCL3	AtSCL3	Regulador positivo da via de sinalização de GA, integração da sinalização de GA/DELLA e da via de SCR/SHR na expansão celular de raízes	Heo et al., 2011; Zhang et al., 2011
LISCL	LISCL, AtSCL14, NtGRAS1, CsSCL1, PrSCL1	Regulador transcricional, regulador transcricional ou ativação associada com a resposta de plantas a estresse, formação de raízes adventícias em resposta a auxina	Czikkel; Maxwell, 2007; Fode et al., 2008; Morohashi et al., 2003; Sanchez et al., 2007
AtSCL4/7	PeSCL7	Regulador transcricional em respostas a estresses ambientais como estresse salino, choque osmótico e seca	Ma et al., 2010
AtPAT1	AtPAT1, AtSCL13, OsCIGR1, OsCIGR2	Sinalização específica do PhyA, regulador positivo da sinalização dependente de luz vermelha do PhyB, alongamento do hipocótilo, regulador transcricional dos estágio iniciais da defesa em plantas	Bolle et al., 2000; Day et al., 2004; Day et al., 2003;Torres-Galea et al., 2006
DLT	Rice semi-dwarf mutant with low- tillering (DLT or Os29)	Via de sinalização de brassinoesteróides (BR), regulado negativamente por BRs endógenos e exógenos, modulação das respostas a BRs e participação no controle do perfilhamento de arroz	Bai et al., 2007; Tong et al., 2009
AtLAS	AtLAS, LeLs, OsMOC1	Formação de gemas axilares, iniciação dos meristemas axilares, controle do perfilhamento	Greb et al., 2003; Li et al., 2003; Schumacher et al., 1999
HAM	HAM, BnSCL1, MtNSP2	Manutenção do meristema apical, ativador transcricional de respostas a auxina, co-ativador transcricional da nodulação	Gao et al., 2004; Hirsch et al., 2009; Kalo et al., 2005; Stuurman et al., 2002

Tabela 1 – Principais funções biológicas de 10 subfamílias das proteínas GRAS. As proteínas listadas representam algumas das proteínas GRAS já caracterizadas com alguns de seus representantes como referência. Tabela adaptada de Sun et al. (2012).

Dentre as 10 subfamílias citadas, *HAM* tem um importante papel na manutenção do meristema caulinar. A proteína HAM foi inicialmente identificada como um componente de uma nova via de sinalização em petúnia, promovendo indeterminação caulinar (STUURMAN; JAGGI; KUHLEMEIER, 2002). A função de *PhHAM* no meristema apical é semelhante a função de *AtSHR* no meristema radicular, pois no meristema apical, a manutenção de células indiferenciadas acontece, pelo menos em parte, pela expressão de *PhHAM* nas células circundantes (STUURMAN; JAGGI; KUHLEMEIER, 2002) e a expressão de *AtSCR* no centro quiescente é necessária para manter o estado indiferenciado das células iniciais (NAKAJIMA et al. 2001; SABATINI et al., 2003). No caso de mutantes *ham* (perda de função) em *Arabidopsis*, as características observadas são atribuídas a alterações na regulação da divisão celular (ENGSTROM et al., 2011). Ao nível molecular, *PhHAM* é necessária para a resposta celular as proteínas homeobox TERMINATOR (PhWUSCHEL) e SHOOTMERISTEMLESS (PhSTM). A manutenção de células-tronco por *HAM* e *WUS* são processos em grande parte paralelos, embora a manutenção da expressão espacial de *PhWUS* dependa indiretamente de *HAM* (STUURMAN; JAGGI; KUHLEMEIER, 2002).

Em tomateiro, os únicos membros da família GRAS caracterizados são os genes *LATERAL SUPRESSER (LS)*, que é necessário para o desenvolvimento de meristemas axilares (SCHUMACHER et ai., 1999) e *PROCERA (PRO)* que codifica uma proteína DELLA, envolvida na via de transdução da giberelina (JASINSKI et al., 2008).

2.4 Objetivos

O objetivo geral da presente dissertação foi caracterizar melhor o gene RG1, mapeando e anotando os genes presentes na região cromossômica que contem RG1 e analisando o padrão de expressão gênica em linhagens quase isogênicas com e sem o alelo Rg1. Desse modo, os seguintes objetivos específicos foram buscados:

I. Obter recombinantes entre MT-Rg1 e MT-wf a fim de reduzir o segmento de introgressão do alelo Rg1 no cromossomo 3;

II. Fazer o mapeamento genético fino da região do cromossomo 3 na qual o gene *RG1* está localizado através de marcadores moleculares baseados em PCR (CAPs e SCAR), com o intuito de deixar mais preciso o mapeamento realizado por Koornneef et al. (1993) ;

II. Identificar genes diferencialmente expressos entre MT e MT-*Rg1* por RNA-seq (Plataforma SOLiD) e qRT-PCR, identificando possíveis vias relacionadas com o gene *RG1* e a organogênese *in vitro*.

3 MATERIAL E MÉTODOS

O presente trabalho foi realizado no Laboratório do Controle Hormonal do Desenvolvimento Vegetal, no Departamento de Ciências Biológicas, ESALQ-USP, sob orientação do Prof. Dr. Lázaro Eustáquio Pereira Peres pelo CENA-USP. Parte dos experimentos foi realizada no Laboratório de Melhoramento de Plantas, no CENA-USP, sob orientação do Prof. Dr Antonio V. de O. Figueira e no Laboratório de Genética Molecular de Plantas, no Departamento de Botânica, IB-USP, sob orientação da Prof^a. Dr^a. Marie-Anne Van Sluys.

3.1 Material vegetal e condições de cultivo em casa de vegetação

Os genótipos utilizados neste trabalho foram a cultivar miniatura de tomateiro Micro-Tom (MT) e linhagens quase isogênicas a essa cultivar contendo os alelos *Rg1* e *wf* (*white flower*), localizados no cromossomo 3. Todos esses genótipos foram desenvolvidos no Laboratório de Controle Hormonal do Desenvolvimento Vegetal e estão descritos no seguinte site: www.esalq.usp.br/tomato, mantido pelo referido laboratório. Também foram os parentais *S. pennellii* e *S. peruvianum* e Micro-MsK, o qual foi obtido após o cruzamento de MsK com Micro-Tom e 8 gerações de autofecundação e seleção (F8). Embora este genótipo combine a alta capacidade de regeneração de MsK e o nanismo de MT, ele não é isogênico a MT.

Para o cultivo das plantas, suas sementes foram colocadas para germinar em vasos de 250 mL contendo uma mistura 1:1 (volume) de substrato comercial (Plantmax HT Eucatex, Brasil) e vermiculita, suplementada com 1 g/L de NPK 10:10:10 e 4 g/L de calcário. Quando as plantas atingiram 15-20 dias, elas foram transplantadas individualmente para vasos de 150 mL contendo a mesma mistura de substrato. Frutos maduros foram coletados e a polpa juntamente com as sementes foram retiradas e mantidas em fermentação com levedura comercial (Femix, Brasil) durante 1 dia. Em seguida, as sementes foram lavadas em água corrente e secadas ao ar livre, sendo guardadas em envelopes de papel alumínio na geladeira para a conservação de sua viabilidade

As sementes germinadas *in vitro* e utilizadas nos experimentos de regeneração foram posteriormente transplantadas para a casa de vegetação aproximadamente aos 25 dias, sendo aclimatadas por volta de uma semana em uma câmara úmida adaptada com a parte superior de uma garrafa pet de 600 mL. As plântulas transplantadas para a casa de vegetação não foram as mesmas utilizadas no teste *in vitro*, sendo utilizadas plântulas irmãs a elas.

Para a obtenção de plantas recombinantes foram realizados os cruzamentos 1.1. Rg1/Rg1 Wf/Wf x rg1/rg1 wf/wf (MT-Rg1 x MT-wf) e 1.2. Rg1/rg1 Wf/wf x rg1/rg1 wf/wf. As sementes obtidas no cruzamento 1.2. foram colocadas para germinar, sendo triados recombinantes Rg1/rg1 wf/wf (Figura 2). Como a ramificação é um efeito pleiotrópico de Rg1(LOMBARDI, 2008), esta característica foi utilizada para a triagem dos recombinantes, sendo selecionadas as plantas que possuíam aumento da ramificação (Rg1) e flores brancas (wf) (Figura 2).

Figura 2 - Esquema dos cruzamentos realizados entre MT-Rg1 e MT-wf para a obtenção de plantas recombinantes. Plantas contendo o alelo Rg1 foram cruzadas com plantas contendo o alelo wf. As plantas resultantes deste cruzamento foram novamente cruzadas com MT-wf, sendo triados os recombinantes obtidos a partir deste cruzamento.

3.2 Cultivo in vitro dos explantes

As plântulas utilizadas para os testes de regeneração *in vitro* e para a extração de RNA foram obtidas através de germinação *in vitro* em frascos contendo a metade da concentração dos nutrientes utilizados em MB, permanecendo quatro dias no escuro e depois sendo transferidas para condição de 14 h de fotoperíodo, 50 μ M fotons.m⁻².s⁻¹ e temperatura de 25 ± 1 °C, por mais quatro ou oito dias, de acordo com o experimento.

Para o cultivo *in vitro* foram utilizados os seguintes meios de cultura: MB (Meio Basal) composto pela concentração dos macronutrientes e micronutrientes de MS (MURASHIGE; SKOOG, 1962), vitaminas B5 (GAMBORG; MILLER; OJIMA, 1968) e 30 g.L⁻¹ de sacarose; RIM (Root Inducer Medium) composto por MB suplementado com 0,4 μ M

de ANA (ácido naftaleno acético) e SIM (Shoot Inducer Medium) composto por MB suplementado com 5 μ M de BAP. Foram utilizadas soluções estoques de 5 mM de BAP (0,0563 g dissolvidos em 50 mL de água) e 0,4 mM de ANA (0,0037 g dissolvidos em 50 mL de água). Para o preparo das soluções estoque, BAP foi inicialmente dissolvido com o auxílio de gotas de HCl 1 M, enquanto ANA foi dissolvido com KOH 1 M. Os hormônios foram filtrados em filtro tipo Millipore (0,2 μ m de diâmetro), e adicionados aos meios de cultura após a autoclavagem do mesmo. O meio de cultura foi vertido em placas de Petri, sendo utilizados 30 mL de meio por placa.

Para o cultivo *in vitro*, explantes cotiledonares foram inoculados em RIM e avaliados quanto a formação de raízes aos 9 dias após a inoculação, ou utilizados após 1 dia em contato com o meio para a extração de RNA. Os mesmos tipos de explantes foram inoculados em SIM para observar a capacidade de formação de gemas caulinares após 21 dias de inoculação, ou utilizados após 5 dias em contato com o meio para a extração de RNA.

Para o ensaio do tempo para indução de gemas caulinares, foram utilizados explantes cotiledonares de MT e MT-*Rg1* que foram inoculados primeiramente em SIM e depois transferidos para MB, variando-se o número de dias que os explantes permaneceram em cada meio. O experimento foi avaliado quanto à porcentagem de gemas formadas após 21 dias da inoculação.

Posteriormente, para determinar qual fase está sendo afetada no processo de formação de gemas em MT e MT-*Rg1*: a aquisição de competência ou a indução para regeneração *in vitro*, foi analisado o tempo para aquisição de competência e indução da regeneração. Desta forma, o meio RIM, de indução de raízes, foi utilizado para substituir gradativamente o meio SIM dentro de um total de 8 dias, o qual é suficiente para que ocorra a indução de gemas caulinares de explantes cotiledonares em SIM. Após este período, todos os tratamentos permaneceram em MB. A avaliação foi baseada na taxa de explantes com gemas e/ou raízes e no número de raízes por explantes e foi realizada 21 dias após a inoculação do experimento.

3.3 Extração de DNA genômico

O DNA genômico foi extraído segundo Fulton, Chunwongse e Tanksley (1995), a partir de 100 mg de folhas de plantas com aproximadamente 30 dias que foram colocadas em um tubo eppendorf de 1,5 mL e maceradas com nitrogênio líquido. Posteriormente, foram preparadas as soluções estoques do tampão de Extração de DNA (TED), Tampão de Lise (TL) e Tampão de Micro-Prep (TMP), o qual é uma mistura de TED e TL (FULTON;

CHUNWONGSE; TANKSLEY, 1995), e foi mantido em temperatura ambiente. Foram adicionados 200 µL de TMP ao tecido que foi novamente macerado, sendo acrescentados mais 550 µL de TMP e agitados em vortex. A solução foi então incubada a 65 °C em banhomaria por 60 minutos. O tubo foi completado com uma solução de clorofórmio/isoamílico (24:1), cerca de 500 µL e novamente, cada tubo foi levado ao vortex. Depois os tubos foram centrifugados a 10.000 rpm por 5 minutos, sendo a fase aquosa pipetada e transferida para novos tubos, nos quais foi adicionado o mesmo volume recuperado de isoproponol frio para precipitar o DNA. Imediatamente após ser centrifugado a 10.000 rpm por 5 minutos, o isopropanol foi descartado e o *pellet* formado foi lavado com etanol 70% e seco deixando-se os tubos invertidos em papel toalha por cerca de 30 minutos. O DNA foi ressuspendido em 50 µL de Tampão TE e colocado a 65 °C por 15 min, sendo novamente centrifugado por 10 minutos a 10.000 rpm e armazenado a -20 °C. Os DNA foi quantificado e analisado por eletroforese em gel de 0,8% agarose em tampão 1X SB, sendo adicionados o volume adequado de tampão de carregamento contendo o corante SYBR *Gold nucleic acid gel stain* (Invitrogen). Para as reações com os marcadores o DNA foi diluído a 20 ng.

3.4 Reações de PCR e digestão dos marcadores selecionados

Cada reação de 25 μ L continha 1 U de *Taq* DNA Polimerase; 1X tampão de *Taq* DNA Polimerase (Fermentas); 0,2 mM dNTP; 3,0 mM MgCl2; 0,2 μ M de cada iniciador e 0,8 ng de DNA. As etapas de amplificação consistiram de desnaturação inicial de 94°C por 5 min, seguido de 40 ciclos de 94°C por 40 s, 55°C por 30 s e 72°C por 60 s; com extensão final à 72°C por 5 min. Os fragmentos amplificados foram analisados por eletroforese em gel de 1,0 % agarose em tampão 1X SB. A cada uma das amostras foi adicionado um volume adequado de tampão de carregamento contendo o corante SYBR *Gold nucleic acid gel stain* (Invitrogen). Posteriormente foi realizada a digestão dos produtos de PCR do marcador P1 com a enzima HinfI. Cada reação de 25 μ L continha 21 μ L do produto da reação de PCR, 5 U da enzima de restrição e 1X do tampão específico (Fermentas). Os fragmentos digeridos foram analisados por eletroforese em gel de 1,5% agarose em tampão 1X SB, sendo adicionados o volume adequado de tampão de carregamento contendo o corante SYBR *Gold nucleic de PCR*, 5 U da enzima de restrição e 1X do tampão específico (Fermentas). Os fragmentos digeridos foram analisados por eletroforese em gel de 1,5% agarose em tampão 1X SB, sendo adicionados o volume adequado de tampão de carregamento contendo o corante SYBR *Gold nucleic acid gel stain* (Invitrogen).

3.5 Extração de RNA

Para o seqüenciamento pela plataforma SOLiD 3, O RNA total das amostras foi extraído através do método do Cloreto de Lítio (SAMBROOK; FRITSCH; MANIATIS, 1989) e foi tratado com DNase I (Turbo DNA Free – Ambion), de acordo com as instruções do fabricante.

Para as analises por qRT-PCR, o RNA foi extraído através da adaptação do protocolo do reagente TRIZOL. Para isso, o material vegetal (cotilédones de plântulas ou explantes inoculados em meio de cultura) foi moído em tubo eppendorf com nitrogênio liquido, sendo adicionados 1 mL de TRIZOL antes das amostras descongelarem. As amostras permaneceram por 5 minutos em temperatura ambiente e foram centrifugadas a 11.400 rpm por 15 minutos a 4 °C, sendo transferida a fase aquosa para um novo tubo. Foram adicionados 200 µL de clorofórmio/isoamílico (24:1) e o tubo foi agitado por 15 segundos e incubado em temperatura ambiente por 5 minutos, sendo centrifugado novamente a 11.400 rpm por 15 minutos a 4 °C. A fase superior foi transferida para um novo tubo e foram adicionados 500 μ L de isopropanol e a solução foi agitada levemente para em seguida ser centrifugada a 11.400 rpm por 10 minutos a 4 °C. O *pellet* obtido foi lavado 3 vezes com 1 mL de álcool 75% e os tubos foram centrifugados a 11.400 rpm por 6 minutos a 4 °C e o pellet foi deixado na bancada por 2 horas para secar e ser ressuspendido em 20 µL de água DEPC autoclavada. O RNA obtido foi quantificado em NanoDrop e uma alíquota foi utilizada para testar a integridade do RNA em gel de agarose 1%. O RNA total das amostras foi tratado com DNase I (Turbo DNA Free – Ambion), de acordo com as instruções do fabricante.

3.6 Estudo dos perfis transcricionais por RNA-Seq na plataforma SOLiD 3

Após a extração e tratamento do RNA total, o RNA ribosomal foi depletado através da utilização do Ribominus Plant Kit (Invitrogen), de acordo com as intruções do fabricante. A qualidade e concentração das amostras de RNA foram verificadas através da corrida em "chip" utilizando Agilent 2100 Bioanalyzer. As bibliotecas de cDNA foram obtidas utilizando-se o SOLiD Total RNA-seq Kit (Ambion), de acordo com o "Whole Transcriptome Library Preparation for SOLID Sequencing Protocol" (Applied Biosystems). A preparação das "beads" para sequenciamento foi feita estritamente de acordo com o "SOLID 3 System Templated Bead Preparation Guide" (Applied Biosystems). A corrida das amostras seguiu estritamente o "SOLID 3 System Instrument Operation Guide" (Applied Biosystems).

Tanto as análises de qualidade das sequências, quanto os mapeamentos e análises estatísticas foram realizadas utilizando-se o programa "CLC Genomics Workbench 4.0.3". Sequências com menos de 100% de acurácia foram retiradas das análises. Os valores de expressão foram calculados como RPKM, um índice que normaliza o número de "reads" mapeados pelo tamanho da sequência do unigene, e transformados em raiz quadrada, de modo a diminuir o efeito de amostras individuais que estejam muito fora da média. Foram realizados os testes que checam a correlação entre as réplicas técnicas das diferentes amostras: Box Plot, PCA ("Principal Component Analysis") e HCA ("Hierarchical Clustering Analysis"). Em todos os casos a qualidade do sequenciamento e a veracidade das réplicas técnicas foram confirmadas. Para a análise estatística foi aplicado o teste t, com os parâmetros "pairwise comparison of groups", "multi-groups experiment" e "comparison = Against reference WT". Foi aplicada a correção de Bonferroni sobre o resultado.

3.7 Desenho dos iniciadores

Os *primers* foram desenhados empregando o programa *on-line OligoPerfect*TM *Designer* (http://tools.invitrogen.com/content.cfm?pageid=9716), ajustado com os parâmetros padrões, exceto: o tamanho do fragmento a ser amplificado, variando de 50 a 150 pb; tamanho do *primer* entre 18 e 22 pb (ótimo a 20 pb); temperatura de anelamento entre 59 e 61°C (ótimo a 60°C); conteúdo GC% entre 40 e 60% (ótimo a 50%). Dentre os pares de iniciadores obtidos para cada gene de interesse, selecionou-se aquele com melhores características segundo o programa *on-line NetPrimer* (http://www.premierbiosoft.com/netprimer), levando-se em conta a estabilidade e eventual ocorrência de pareamento indesejável; como a formação de alças (*hairpins*), dímeros do mesmo iniciador (*primer dimers*) e entre o par de iniciadores (*cross dimers*).

3.8 Análises por qRT-PCR

O RNA tratado com DNAse foi preparado para a síntese e sintetizado utilizando-se todas as especificações do kit *RevertAidTM Premium Reverse Transcriptase* (Fermentas). Realizou-se uma reação de RT-PCR para a confirmação da eficiência da síntese do cDNA recém sintetizado, utilizando-se o iniciador do gene da Tubulina. A reação seguiu os seguintes parâmetros: 1 μ L de cDNA na diluição 1:10 (v/v), 0,2 mM de DNTPs, 0,2 μ M de cada iniciador, 2 mM de MgCl₂, 1 U da enzima *Taq* polimerase, 10x *Taq buffer* (Fermentas) e

água ultrapura (Mili-Q) estéril, totalizando 25 μ L de reação. Os produto amplificados foram visualizados em gel 1% agarose, tampão SB e eletroforese a 3 V cm⁻¹.

As análises de amplificação quantitativa de transcritos reversos (RT-qPCR) foram realizadas em termociclador centrífugo RotorGene 3000 (*Corbett Research*, Austrália), a partir de diluições do cDNA total derivado da transcrição reversa (RT) das amostras de RNA. As reações de amplificação foram realizadas no volume final de 10 µL utilizando-se 1µL de cDNA na diluição 1:10 (v/v); 0,2 µM dos iniciadores gene-específicos; 5µL de *SYBR*® *Green PCR Master Mix* (Life Technologies). As amplificações foram conduzidas em incubação inicial de 95 °C por 10 min e seguida de 40 ciclos de 95°C por 15 s, 60°C por 15 s e 60 °C por 60 s, com detecção do sinal da fluorescência ao final de cada etapa de extensão. Após o término dos ciclos de reações, foram determinadas as curvas de dissociação de cada produto amplificação, todos os experimentos incluíram controle negativo (água, sem DNA molde), e a eficiência de amplificação de cada par de iniciadores foi determinada pela curva de eficiência com três diluições seriais de DNA de folhas de tomateiro, utilizados nas diluições 1:10; 1:100 e 1:100 (v/v). Para a normalização da expressão dos genes de interesse, o programa REST 2009 foi adotado.

3.9 Análises in silico

Para a construção de uma árvore filogenética, as seqüências de nucleotídeos dos genes de tomateiro encontradas no SGN (SOL Genomics Network - http://sgn.cornell.edu/index.pl) foram comparadas com as seqüências disponíveis no banco de dados publico NCBI (National Center for Biotechnology Information www.ncbi.nlm.nih.gov/). Todas as sequências obtidas foram traduzidas com o programa Expasy (http://web.expasy.org/translate/) e foi feita a busca pelos domínios conservados relacionados a função de interesse, analisando estas següências ferramenta Conserved Domain Search Service (CD-Search na http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Sabendo-se o inicio e o final dos domínios conservados de cada um dos genes, foi feito o alinhamento destes domínios com a ferramenta ClustalW do programa MEGA 5.0 (TAMURA et al. 2011) utilizando-se os parâmetros padrões (default). As árvores foram construídas utilizando-se o programa MEGA 5.0, com o modelo de comparação Neighbor-joining (SAITOU; NEI 1987), método de distância p e supressão pair-wise. A robustez dos ramos gerados pela árvore foi medida pelo
teste probabilístico bootstrap (SITNIKOVA; RZHETSKY; NEI 1995), originado a partir de 1000 repetições.

4.1 *Rg1* aumenta a capacidade de regeneração atuando na fase de aquisição de competência

Visto que o alelo Rg1 apresenta maior capacidade de regeneração *in vitro* (KOORNNEEF; HANHART; MARTINELLI, 1987; LIMA *et al.*, 2004; LOMBARDI, 2008), foram realizados experimentos com o intuito de analisar melhor o envolvimento deste alelo nas etapas do processo de regeneração. Para tanto, foi realizado um ensaio com MT e MT-Rg1 para verificar o número de dias necessários para a indução de gemas caulinares. Através da transferência seqüencial de explantes de SIM para MB, pode-se inferir que são necessários pelo menos 6 dias em SIM para a indução de gemas caulinares nos explantes de MT e 5 dias para Rg1 (Figura 3), sendo considerada uma porcentagem alta de regeneração após 8 dias para MT e 7 dias para Rg1 (Figura 3).

Figura 3 - Número de dias necessários em SIM para a indução de gemas caulinares em explantes cotiledonares em MT e MT-*Rg1*. Após cada tempo de incubação em SIM, os explantes foram transferidos para MB, permanecendo neste até que se completasse um total de 21d *in vitro*, quando fez se a observação da presença de gemas. Controles representando 21 dias em MB ou 21 dias em SIM são apresentados nas extremidades do gráfico. Os explantes foram retirados de plântulas aos 8 dias após semeadura *in vitro*. Barras de erro representam a média \pm SE, n = 6 placas de Petri contendo 20 explantes cada.

Como o tempo total de indução inclui o tempo de aquisição de competência, o próximo passo foi verificar quantos dias são necessários para as fases de aquisição de competência e de indução do processo de regeneração, separando e caracterizando estes processos individualmente. Sabendo-se que o processo de aquisição de competência precede a indução de raízes e gemas caulinares, os primeiros dias em SIM foram substituídos gradativamente por RIM, dentro de um total de 8 dias, o qual é suficiente para que ocorra indução de gemas caulinares em SIM (Figura 3). Ao final de 8 dias, todos os tratamentos foram transferidos para meio MB até que se completasse um total de 21 dias.

Os resultados mostram que os primeiros dois dias em SIM podem ser substituídos por RIM em MT (Figura 4A), obtendo-se apenas gemas caulinares. Por outro lado, o mesmo tratamento é suficiente para induzir gemas caulinares e raízes em MT-Rg1 (Figura 4B). Esses dados confirmam que o alelo Rg1 confere uma maior capacidade de regeneração e reduz a quantidade de dias necessários para o tempo de aquisição de competência, o qual seria de 2-3 dias para MT e de 1-2 dias para MT-Rg1.

Enquanto é de longo tempo conhecido que a fase de indução é controlada pelo balanço auxina/citocinina (SKOOG; MILLER, 1957), poucos estudos estão relacionados à aquisição de competência, sendo encontrados apenas dois mutantes em *Arabidopsis, ire*, um mutante que aumenta especificamente a competência (CARY *et al.*, 2001) e *srd*, um mutante que diminui esta capacidade (YASUTANI *et al.*, 1994). Neste contexto, *Rg1* torna-se muito importante para o entendimento deste processo, pois ele atua na fase de aquisição de competência de forma positiva (Figura 4), o que permite que estudos mais aprofundados neste gene tragam mais conhecimento nesta fase do processo de regeneração.

Figura 4 - Determinação do tempo necessário para aquisição de competência para formar novos órgãos (caules ou raízes) em explantes cotiledonares de MT (A) e MT-Rg1 (B). Utilizou-se RIM para substituir gradativamente SIM dentro de um total de 8 dias, o qual é suficiente para que ocorra indução de gemas caulinares em SIM (ver Figura 3). Ao final de 8 dias, todos os tratamentos foram transferidos para meio MB até que se completasse um total de 21 dias. C. Número de raízes por explante em MT e MT-Rg1. Os explantes foram retirados de plântulas aos 8 dias após semeadura *in vitro* e os resultados foram observados após 21 dias de inoculação dos explantes. Barras de erro representam a média \pm SE, n = 6 placas de Petri contendo 20 explantes cada.

4.2 Obtenção de plantas recombinantes

Para a obtenção de recombinantes foram feitos os cruzamentos 1.1. e 1.2. (ver item 3.1 em Material e Métodos), sendo triados os recombinantes Rg1/rg1 wf/wf (Figura 2). Algo que facilitou tal análise é o fato de termos descoberto que Rg1 possui um efeito pleiotrópico aumentando o número de gemas laterais *ex vitro* (LOMBARDI, 2008). Desse modo, os possíveis recombinantes foram triados através das características cor da pétala e ramificação, sendo selecionados como recombinantes as plantas que possuíam muitas ramificações e ao mesmo tempo tiveram flores brancas ao invés de amarelas (Rg1/rg1 wf/wf). Nesta seleção foram obtidos 30 recombinantes potenciais (Figura 5), de um total de 223 plântulas transplantadas, sendo que 121 destas possuíam flores brancas. A seleção através da ramificação dos recombinantes foi feita quando estes estavam no final da antese, período em que esta característica pode ser melhor visualizada.

Figura 5 - Aspecto visual de plantas MT-Rg1, MT-wf e dos 30 recombinantes wf X Rg1wf, selecionados através da cor branca das pétalas e da ramificação (Rg1/rg1 wf/wf), após os cruzamentos 1.1. Rg1/Rg1 Wf/Wf x rg1/rg1 wf/wf (MT-Rg1 x MT-wf) e 1.2. Rg1/rg1 Wf/wf x rg1/rg1 wf/wf.

4.3 Avaliação da capacidade de formação de gemas caulinares e raízes *in vitro* dos possíveis recombinantes

Para confirmar a presença do alelo Rg1 foram realizados testes *in vitro* para avaliar a formação de raízes e gemas caulinares em explantes dos recombinantes, pois o alelo Rg1 aumenta a capacidade de formação destes órgãos (LOMBARDI, 2008). Para tal, sementes obtidas da autofecundação dos recombinantes foram germinadas *in vitro* e utilizadas nos experimentos de regeneração aos 12 dias após semeadura. Ressalva-se que nos protocolos de regeneração de tomateiro, utilizam-se plântulas com 8 dias após semeadura (PINO et al. 2010), mas aqui foi utilizado uma condição não ideal (12 dias) justamente para aumentar o contraste entre os genótipos. Além disso, um dos efeitos do alelo Rg1 é justamente preservar a capacidade de regeneração do explante ao longo do tempo (PINO et al., 2010).

Através dos resultados obtidos com a inoculação dos explantes em SIM (Figuras 6A e 7), pode-se observar que nem todos os recombinantes obtidos regeneraram tão bem como esperado, sendo selecionados 7 como os melhores (1, 2, 4, 6, 16, 25 e 26). Isto pode ter ocorrido devido ao fato de MT-wf também ser ramificado (Figura 5), atrapalhando na seleção dos recombinantes. Além disso, embora seja razoável supor que a maior ramificação *ex vitro* seja um efeito pleiotropico de Rg1 (LOMBARDI, 2008), não se pode excluir a hipótese de que seja efeito de outro gene, o qual estaria ligado fisicamente a Rg1 e poderia ter sido recombinado em algumas linhas, produzindo plantas que são ramificadas, mas que não possuem elevada capacidade de regeneração. Por outro lado, alguns destes recombinantes apresentaram taxa de regeneração maior que o controle MT-Rg1, o que pode ser efeito da redução do segmento introgredido, o que eliminaria genes adjacentes a RG1 que podem ter efeito negativo na regeneração.

Complementarmente, através dos resultados obtidos com a inoculação dos explantes em RIM (Figuras 6B, 6C e 8), pode-se observar que a diferença entre MT e MT-*Rg1* foi mais significativa quando avaliada a porcentagem de explantes com raízes, embora apenas com a somatória dos resultados pode-se separar novamente as linhagens de recombinantes selecionadas, mostrando que elas realmente apresentam diferença significativa na regeneração *in vitro*. Pode-se observar novamente que alguns destes recombinantes apresentaram capacidade de formação de raízes maior que MT-*Rg1*, o que fortalece a hipótese levantada no item anterior de que outros genes próximos podem afetar de forma negativa o processo de regeneração. As plântulas irmãs das linhagens selecionadas foram transplantadas para a casa de vegetação para a obtenção de sementes para testes futuros.

Figura 6 – Regeneração de explantes cotiledonares nas diferentes linhagens de Recombinantes. (A) Porcentagem de formação de gemas caulinares em explantes cotiledonares dos diferentes recombinantes cultivados em SIM. (B-C) Formação de raízes em explantes cotiledonares cultivados em RIM. (B) Porcentagem de explantes que formaram raízes. (C) Número de raízes formadas em cada explante. (A-C) Barras de erro representam a média \pm SE, n=6. * indicam diferenças significativas (P<0.05, t de Student) sendo *>MT e *<*Rg1*.

Figura 7 - Representação fotográfica da formação de gemas caulinares em explantes cotiledonares dos diferentes recombinantes. Barra=1 cm.

Figura 8 - Representação fotográfica da formação de raízes em explantes cotiledonares dos diferentes recombinantes. Barra=1 cm.

4.4 Uso de marcadores moleculares para mapeamento genético

Para o mapeamento, foi realizada uma busca para encontrar marcadores moleculares já definidos para o cromossomo 3 e que dão polimorfismo entre *Solanum lycopersicum* e *S. pennellii*, a fim de testar o polimorfismo deles entre MT e *S. peruvianum*, o doador do alelo Rg1. Estes marcadores foram escolhidos pela posição em cM, de acordo com a posição de Rg1 sugerida no mapa obtido por Koornneef et al. (1993). No referido mapa, o autor posicionou Rg1 entre as mutações *white flower* (*wf*) e *yellow flesh* (*r*), sendo que mais tarde os genes *WF* e *R* foram isolados provando ser correspondentes aos genes para *BETA-CAROTENE HYDROXYLASE* (CrtR-b) e *PHYTOENE SYNTHASE* (*PSY1*), respectivamente (GALPAZ et al., 2006, FRAY; GRIERSON, 1993). Desse modo, buscou-se as posições dos genes *CrtR-b* e *PSY1*, sendo esses genes utilizados como base para escolha de marcadores moleculares (Tabela 2) presentes no site do SGN (SOL Genomics Network - http://sgn.cornell.edu/index.pl). Ao encontrar as posições de *CrtR-b* e *PSY1*, também foi possível obter uma lista contendo 301 genes, excluindo-se os dois extremos, que foram inicialmente selecionados como os genes candidatos a *RG1* (Tabela 3).

Após a escolha dos marcadores moleculares, estes foram utilizados para verificarmos polimorfismos entre MT, MT-Rg1 e MT-wf e os recombinantes. Para isso foi extraído o DNA de *S. pennellii, S. peruvianum*, Micro-MsK, MT, MT-Rg1, MT-wf e das 7 linhagens recombinantes selecionadas, seguindo o protocolo de reação encontrado no SGN. Os dados obtidos mostram que tanto o marcador molecular CAPS (Figura 9A), quanto o marcador molecular SCAR (Figura 9B) apresentaram polimorfismo entre *S. peruvianum*, *S. pennellii* e MT. Porém, nenhum deles apresentou polimorfismo entre MT, Micro-MsK, MT-Rg1, MT-wf ou qualquer uma das plantas das linhagens recombinantes. Com isso, foi possível deduzir que o fragmento de introgressão e, portanto, o fragmento no qual o alelo Rg1 está inserido, é a região entre o marcador P5 e o gene CrtR-b (Figura 10). Desta forma, a lista de genes candidatos atualmente apresenta um total de 136 genes.

#	Marker	Tipo	Posição	Sequência	Temp	Enzima	Tamanho	Cone ID	MgCl ₂
_	ID			F / R			pen/esc	Gene ID	(mM)
P3	TG585	CAPS	40	TGGAAAGCCAGACACAC AGA CAGGGGTATCAGTAGGC AGTG	55 55	Hinf I	491 300+191	Solyc03g 006660	1,5
P1	T1388	CAPS	47	GCGATTTGGCTATCTGG GTA AACCGAAAGGCTTTTCC AAG	55 55	Hinf I	480+270 350+200	Solyc00g 110870	3
P4	C2_At1g 51160	SCAR	47,5	TCTTCGGAGGATCAGAG ATCAGTCC AACGAACATCCTTGTCC AGGTAATTG	55 55	-	175 300	Solyc03g 007690	1,5
P5	C2_At5g 23940	SCAR	54,7	TAGGCCTCTACTCGCCG TACAGC TTAGTTCTTTCGAGGAA AGGTGGG	53 53	-	100 150	Solyc03g 025320	3
P2	cLPT-2- E21	CAPS	61	CGAAGATGTTGCTTGAT TGC AAGCAGGAGCTGGACAC AAT	55 55	EcoR I	1250 1050+200	Solyc03g 026060	1,5

Tabela 2 - Marcadores moleculares utilizados para o mapeamento do cromossomo 3, região na qual o gene *RG1* está localizado.

Tabela 3 - Lista de genes candidatos para o gene *RG1*, localizados entre os genes *CrtR-b* (*WHITE FLOWER*) e *PSY1* (*YELLOW FLESH*). Encontram-se destacados os genes referentes aos marcadores moleculares e morfológicos e um gene selecionado como principal candidato para *RG1*.

#	Nome	Descrição	Tamanho
1	Solyc03g007960 Wf	Beta-carotene hydroxylase 2 (CrtR-b)	2418
2	Solyc03g007970	UDP-N-acetylmuramate-alanine ligase (AHRD V1 ***- Q3LHF7_PHYPA); contains Interpro domain(s) IPR005758 UDP- N-acetylmuramate-alanine ligase	6410
3	Solyc03g007980	Septum site-determining protein MinD (AHRD V1 ***- D8FVX6_9CYAN); contains Interpro domain(s) IPR010223 Septum site-determining protein MinD	996
4	Solyc03g007990	Unknown Protein (AHRD V1)	156
5	Solyc03g008000	Genomic DNA chromosome 5 BAC clone SL_FOS0006N07 (AHRD V1 ***- Q9LTG2_ARATH)	642
6	Solyc03g008010	PPPDE peptidase domain-containing protein 1 (AHRD V1 * PPDE1_DANRE); contains Interpro domain(s) IPR008580 Protein of unknown function DUF862, eukaryotic	6258
7	Solyc03g013020	Unknown Protein (AHRD V1)	204
8	Solyc03g013030	Small ubiquitin-related modifier (AHRD V1 *-*- C1BRP8_9MAXI)	3722
9	Solyc03g013040	Peptidase M (Fragment) (AHRD V1 ** B3VXA8_POPTN); contains Interpro domain(s) IPR007541 Plant Basic Secretory Protein	1258
10	Solyc03g013050	Unknown Protein (AHRD V1)	290
11	Solyc03g013060	Peptidase M (Fragment) (AHRD V1 ** B3VXA8_POPTN); contains Interpro domain(s) IPR007541 Plant Basic Secretory	1031

		Protein	
12	Solyc03g013070	Unknown Protein (AHRD V1)	333
13	Solyc03g013080	Peptidase M (Fragment) (AHRD V1 ** B3VXA8_POPTN); contains Interpro domain(s) IPR007541 Plant Basic Secretory Protein	162
14	Solyc03g013090	NtPRp27-like protein (AHRD V1 ***- Q84XQ4_SOLTU); contains Interpro domain(s) IPR007541 Plant Basic Secretory Protein	1205
15	Solyc03g013100	Protein phosphatase 2C (AHRD V1 ***- O24078_MEDSA); contains Interpro domain(s) IPR015655 Protein phosphatase 2C	1109
16	Solyc03g013110	Peptidase M (Fragment) (AHRD V1 ** B3VXA9_POPTN); contains Interpro domain(s) IPR007541 Plant Basic Secretory Protein	1149
17	Solyc03g013120	Unknown Protein (AHRD V1)	363
18	Solyc03g013130	HAT family dimerisation domain containing protein (AHRD V1 ***- Q8LNK9_ORYSJ)	207
19	Solyc03g013140	Protein phosphatase 2C (AHRD V1 ***- Q3V656_SOLTU); contains Interpro domain(s) IPR015655 Protein phosphatase 2C	1678
20	Solyc03g013150	Unknown Protein (AHRD V1)	306
21	Solyc03g013160	Amino acid transporter family protein (AHRD V1 **** D7M7A7_ARALY); contains Interpro domain(s) IPR013057 Amino acid transporter, transmembrane	2247
22	Solyc03g013170	Unknown Protein (AHRD V1)	350
23	Solyc03g013180	Unknown Protein (AHRD V1)	285
24	Solyc03g013190	Unknown Protein (AHRD V1)	978
25	Solyc03g013200	Unknown Protein (AHRD V1)	999
26	Solyc03g013210	Unknown Protein (AHRD V1)	171
27	Solyc03g013220	Maturase (Fragment) (AHRD V1 ***- O79414_SOLTU)	399
28	Solyc03g013230	Unknown Protein (AHRD V1)	1102
29	Solyc03g013240	Homology to unknown gene (AHRD V1 ***- Q01H71_OSTTA)	3677
30	Solyc03g013250	Genomic DNA chromosome 3 P1 clone MMF24 (AHRD V1 ***- Q9LHJ6_ARATH)	2005
31	Solyc03g013260	Replication protein A DNA-binding subunit (AHRD V1 ***- B6U4N2_MAIZE); contains Interpro domain(s) IPR012340 Nucleic acid-binding, OB-fold	1392
32	Solyc03g013270	Helitron helicase-like protein (AHRD V1 ***- D0P001_PHYIN)	2619
33	Solyc03g013280	Unknown Protein (AHRD V1)	547
34	Solyc03g013290	Unknown Protein (AHRD V1)	487
35	Solyc03g013300	Ripening-related protein 3 (AHRD V1 ** RIP3_ORYSJ); contains Interpro domain(s) IPR005132 Rare lipoprotein A	576
36	Solyc03g013310	Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase and dual- specificity protein phosphatase PTEN (AHRD V1 ** PTEN_DICDI); contains Interpro domain(s) IPR014020 Tensin phosphatase, C2 domain	2876
37	Solyc03g013320	Unknown Protein (AHRD V1)	159

38	Solyc03g013330	Unknown Protein (AHRD V1)	297
39	Solyc03g013340	Aquaporin Z transmembrane water channel (AHRD V1 **** A4SKG8_AERS4); contains Interpro domain(s) IPR000425 Major intrinsic protein	7742
40	Solyc03g013350	Transposase (AHRD V1 ***- Q6IMW0_ORYSA)	906
41	Solyc03g013360	Polyprotein (AHRD V1 ***- Q0ZLH4_9ORYZ); contains Interpro domain(s) IPR005162 Retrotransposon gag protein	2868
42	Solyc03g013370	Cytochrome c biogenesis FC (AHRD V1 ***- D5I3C4_CITLA)	165
43	Solyc03g013380	Cytochrome c biogenesis (AHRD V1 ***- Q5U698_BETVU)	225
44	Solyc03g013390	Cytochrome c oxidase subunit 3 (AHRD V1 ***- Q5K5H2_CLIMI); contains Interpro domain(s) IPR000298 Cytochrome c oxidase, subunit III	372
45	Solyc03g013400	Unknown Protein (AHRD V1)	2455
46	Solyc03g013410	Unknown Protein (AHRD V1)	876
47	Solyc03g013420	Unknown Protein (AHRD V1)	330
48	Solyc03g013430	Unknown Protein (AHRD V1)	710
49	Solyc03g013440	Amino acid transporter family protein (AHRD V1 **** D7LM67_ARALY); contains Interpro domain(s) IPR013057 Amino acid transporter, transmembrane	4158
50	Solyc03g013450	Transcription factor-like protein (AHRD V1 ***- O9LXX4 ARATH)	707
51	Solyc03g013460	Cytochrome c oxidase subunit 3 (AHRD V1 ***- Q5M9V7_TOBAC); contains Interpro domain(s) IPR000298 Cytochrome c oxidase, subunit III	345
52	Solyc03g013470	DNA polymerase (AHRD V1 *-*- Q6QZN8_DAUCA); contains Interpro domain(s) IPR004868 DNA-directed DNA polymerase, family B, mitochondria/vírus	1784
53	Solyc03g013480	Ycf2 (AHRD V1 ***- D2KLP5_OLEEU); contains Interpro domain(s) IPR008543 Chloroplast Ycf2	450
54	Solyc03g013490	Ycf2 (AHRD V1 ***- A6YA48_9MAGN)	1071
55	Solyc03g013500	Photosystem Q(B) protein (AHRD V1 ***- Q95B45_9ROSA); contains Interpro domain(s) IPR000484 Photosynthetic reaction centre, L/M	437
56	Solyc03g013510	Unknown Protein (AHRD V1)	252
57	Solyc03g013520	Unknown Protein (AHRD V1)	594
58	Solyc03g013530	Unknown Protein (AHRD V1)	5714
59	Solyc03g013540	Unknown Protein (AHRD V1)	297
60	Solyc03g013550	Unknown Protein (AHRD V1)	1113
61	Solyc03g013560	Unknown Protein (AHRD V1)	1106
62	Solyc03g013570	Unknown Protein (AHRD V1)	393
63	Solyc03g013580	Unknown Protein (AHRD V1)	390
64	Solyc03g013590	Unknown Protein (AHRD V1)	198
65	Solyc03g013600	NAD(P)H-quinone oxidoreductase subunit 6 chloroplastic (AHRD V1 ***- D3WAS8_AUCJA); contains Interpro domain(s)	531

		IPR001457 NADH:ubiquinone/plastoquinone oxidoreductase,	
66	Solyc03g013610	Ribosomal protein L32 (Fragment) (AHRD V1 *-*- D2CZU0_9SOLA); contains Interpro domain(s) IPR002677 Ribosomal protein L32p	168
67	Solyc03g013620	NADH-quinone oxidoreductase subunit L (AHRD V1 ***- NUOL_RHOCA); contains Interpro domain(s) IPR018393 NADH-plastoquinone oxidoreductase, chain 5 subgroup	483
68	Solyc03g013630	Glycosyltransferase (AHRD V1 ***- B9IK47_POPTR); contains Interpro domain(s) IPR002495 Glycosyl transferase, family 8	5870
69	Solyc03g019630	Chaperone protein dnaJ 3 (AHRD V1 ***- C1H789_PARBA); contains Interpro domain(s) IPR003095 Heat shock protein DnaJ	471
70	Solyc03g019640	Chaperone protein dnaJ 49 (AHRD V1 *-*- B6JZX2_SCHJY); contains Interpro domain(s) IPR003095 Heat shock protein DnaJ	6314
71	Solyc03g019650	Nodulin-like protein (AHRD V1 *-*- B6U8U8_MAIZE); contains Interpro domain(s) IPR010658 Nodulin-like	3843
72	Solyc03g019660	Thylakoid lumenal 17.9 kDa protein, chloroplastic (AHRD V1 ***- TL1Y_ARATH)	2533
73	Solyc03g019670	Phosphoesterase family protein (AHRD V1 ***- D7LEV5_ARALY); contains Interpro domain(s) IPR007312 Phosphoesterase	3102
74	Solyc03g019680	CBS domain containing protein (AHRD V1 ***- B6U1W0_MAIZE); contains Interpro domain(s) IPR000644 Cystathionine beta-synthase, core	6250
75	Solyc03g019690	Kunitz-type protease inhibitor (AHRD V1 **** Q3S477_SOLTU); contains Interpro domain(s) IPR002160 Proteinase inhibitor I3, Kunitz legume	654
76	Solyc03g019700	Os02g0508100 protein (Fragment) (AHRD V1 ***- Q0E0Z9_ORYSJ)	210
77	Solyc03g019710	MADS-box transcription factor (AHRD V1 ***- Q5KT55_9ASPA); contains Interpro domain(s) IPR002100 Transcription factor, MADS-box	3550
78	Solyc03g019720	Carnitine operon protein caiE (AHRD V1 * D2T8N9_ERWP6); contains Interpro domain(s) IPR011004 Trimeric LpxA-like	6426
79	Solyc03g019730	Sumo activating enzyme 1b (AHRD V1 **** D7MQ99_ARALY); contains Interpro domain(s) IPR009036 Molybdenum cofactor biosynthesis, MoeB	5935
80	Solyc03g019740	Unknown Protein (AHRD V1)	696
81	Solyc03g019750	Alpha-1 4-glucan-protein synthase (AHRD V1 **_* B9REB8_RICCO); contains Interpro domain(s) IPR004901 Alpha-1,4-glucan-protein synthase, UDP-forming	1530
82	Solyc03g019760	ABC transporter G family member 11 (AHRD V1 ***- AB11G_ARATH); contains Interpro domain(s) IPR013525 ABC- 2 type transporter	4045
83	Solyc03g019770	Uncharacterized PH domain-containing protein (AHRD V1 * C5GPT3_AJEDR); contains Interpro domain(s) IPR019411 Protein of unknown function DUF2404, transmembrane	9318
84	Solyc03g019780	40S ribosomal protein SA (AHRD V1 ***- B6T6X2_MAIZE); contains Interpro domain(s) IPR005707 Ribosomal protein S2, eukaryotic/archaeal	2210
85	Solyc03g019790	Alpha-galactosidase (AHRD V1 **** Q9SP05_SOLLC); contains Interpro domain(s) IPR013785 Aldolase-type TIM barrel	5788
86	Solyc03g019800	Myb-like protein B (AHRD V1 *-*- MYBB_DICDI); contains Interpro domain(s) IPR017877 MYB-like	1799
87	Solyc03g019810	Metallophosphoesterase (AHRD V1 ** C5AIN9_BURGB)	3678
88	Solyc03g019820	Aquaporin (AHRD V1 ***- D6BRE1_9ROSI); contains Interpro domain(s) IPR012269 Aquaporin	1339

89	Solyc03g019830	Receptor like kinase, RLK	2975
90	Solyc03g019840	Plastid DNA-binding protein (Fragment) (AHRD V1 *-*- Q5DW99_BRANA)	5376
91	Solyc03g019850	MAP kinase (AHRD V1 *-** D8SYB3_SELML); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	4713
92	Solyc03g019860	Unknown Protein (AHRD V1)	978
93	Solyc03g019870	Cytochrome P450	3512
94	Solyc03g019880	UPF0426 protein At1g28150, chloroplastic (AHRD V1 ***- Y1815_ARATH)	2892
95	Solyc03g019890	Beta-galactosidase (AHRD V1 ***- A2JGX1_SOLLC); contains Interpro domain(s) IPR001944 Glycoside hydrolase, family 35	9602
96	Solyc03g019900	Serine/threonine-protein phosphatase (AHRD V1 **** C6TK28_SOYBN); contains Interpro domain(s) IPR006186 Serine/threonine-specific protein phosphatase and bis(5- nucleosyl)-tetraphosphatase	7357
97	Solyc03g019910	Unknown Protein (AHRD V1)	3598
98	Solyc03g019920	Harpin-induced protein-like (Fragment) (AHRD V1 ** D2CFH8_COFAR); contains Interpro domain(s) IPR010847 Harpin-induced 1	744
99	Solyc03g019930	UPF0415 protein C7orf25 homolog (AHRD V1 *-*- CG025_DANRE); contains Interpro domain(s) IPR010733 Protein of unknown function DUF1308	3136
100	Solyc03g019940	Asparaginyl-tRNA synthetase (AHRD V1 **** D6YS69_WADCW); contains Interpro domain(s) IPR004522 Asparaginyl-tRNA synthetase, class IIb	7314
101	Solyc03g019950	Genomic DNA chromosome 5 P1 clone MAC12 (AHRD V1 ** Q9FFX3_ARATH); contains Interpro domain(s) IPR004328 BRO1	6591
102	Solyc03g019960	CDT1a protein (AHRD V1 ***- B6SH61_MAIZE); contains Interpro domain(s) IPR014939 DNA replication factor CDT1-like	4282
103	Solyc03g019970	F-box protein interaction domain containing protein (AHRD V1 ***- Q60D10_SOLDE); contains Interpro domain(s) IPR017451 F-box associated type 1	1982
104	Solyc03g019980	Receptor like kinase, RLK	3292
105	Solyc03g019990	Pentatricopeptide repeat-containing protein (AHRD V1 *-*- D7LE02_ARALY); contains Interpro domain(s) IPR017451 F-box associated type 1	3680
106	Solyc03g020000	Pentatricopeptide repeat-containing protein (AHRD V1 *-*- D7L041_ARALY); contains Interpro domain(s) IPR002885 Pentatricopeptide repeat	3866
107	Solyc03g020010	Kunitz-type trypsin inhibitor alpha chain (AHRD V1 **** ID5A_PROJU); contains Interpro domain(s) IPR002160 Proteinase inhibitor I3, Kunitz legume	618
108	Solyc03g020020	AT3G05680-like protein (Fragment) (AHRD V1 *-*- D6PPW0_9BRAS)	22827
109	Solyc03g020030	Proteinase inhibitor II (AHRD V1 ***- B3F0C1_TOBAC); contains Interpro domain(s) IPR003465 Proteinase inhibitor I20, Pin2	908
110	Solyc03g020040	Proteinase inhibitor II (AHRD V1 ***- B3F0C1_TOBAC); contains Interpro domain(s) IPR003465 Proteinase inhibitor I20, Pin2	909
111	Solyc03g020050	Proteinase inhibitor II (AHRD V1 ***- B3F0C1_TOBAC); contains Interpro domain(s) IPR003465 Proteinase inhibitor I20, Pin2	938

112	Solyc03g020060	Proteinase inhibitor II (AHRD V1 ***- Q3S483_SOLTU); contains Interpro domain(s) IPR003465 Proteinase inhibitor I20, Pin2	1078
113	Solyc03g020070	Proteinase inhibitor II (AHRD V1 ***- Q3S483_SOLTU); contains Interpro domain(s) IPR003465 Proteinase inhibitor I20, Pin2	1066
114	Solyc03g020080	Proteinase inhibitor II (AHRD V1 ***- Q3S483_SOLTU); contains Interpro domain(s) IPR003465 Proteinase inhibitor I20, Pin2	1219
115	Solyc03g020090	Ycf2 (AHRD V1 ***- D2KLP5_OLEEU); contains Interpro domain(s) IPR008543 Chloroplast Ycf2	294
116	Solyc03g020100	Unknown Protein (AHRD V1); contains Interpro domain(s) IPR008543 Chloroplast Ycf2	707
117	Solyc03g025100	Unknown Protein (AHRD V1)	250
118	Solyc03g025110	Unknown Protein (AHRD V1)	315
119	Solyc03g025120	Unknown Protein (AHRD V1)	213
120	Solyc03g025130	Unknown Protein (AHRD V1)	282
121	Solyc03g025140	Unknown Protein (AHRD V1)	180
122	Solyc03g025150	Unknown Protein (AHRD V1)	3695
123	Solyc03g025160	Unknown Protein (AHRD V1)	1414
124	Solyc03g025170	GRAS family transcription factor (AHRD V1 **-* B9H3H7_POPTR); contains Interpro domain(s) IPR005202 GRAS transcription factor - GRAS 10	1896
125	Solyc03g025180	Unknown Protein (AHRD V1)	593
125 126	Solyc03g025180 Solyc03g025190	Unknown Protein (AHRD V1) Multidrug resistance protein mdtK (AHRD V1 ** MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE	593 3254
125 126 127	Solyc03g025180 Solyc03g025190 Solyc03g025200	Unknown Protein (AHRD V1) Multidrug resistance protein mdtK (AHRD V1 ** MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 ** MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE	593 3254 5897
125 126 127 128	Solyc03g025180 Solyc03g025190 Solyc03g025200 Solyc03g025210	Unknown Protein (AHRD V1) Multidrug resistance protein mdtK (AHRD V1 ** MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 ** MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Mate efflux family protein (AHRD V1 ** D7M5Q2_ARALY); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE	593 3254 5897 2555
125 126 127 128 129	Solyc03g025180 Solyc03g025190 Solyc03g025200 Solyc03g025210 Solyc03g025220	Unknown Protein (AHRD V1) Multidrug resistance protein mdtK (AHRD V1 ** MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 ** MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Mate efflux family protein (AHRD V1 ** D7M5Q2_ARALY); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE	593 3254 5897 2555 2231
125 126 127 128 129 130	Solyc03g025180 Solyc03g025190 Solyc03g025200 Solyc03g025210 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220	Unknown Protein (AHRD V1) Multidrug resistance protein mdtK (AHRD V1 ** MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 ** MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Mate efflux family protein (AHRD V1 ** D7M5Q2_ARALY); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERE8); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE	593 3254 5897 2555 2231 2843
125 126 127 128 129 130 131	Solyc03g025180 Solyc03g025190 Solyc03g025200 Solyc03g025210 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220	Unknown Protein (AHRD V1) Multidrug resistance protein mdtK (AHRD V1 ** MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 ** MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Mate efflux family protein (AHRD V1 ** D7M5Q2_ARALY); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERE8); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERE8); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERE8); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE	593 3254 5897 2555 2231 2843 1631
125 126 127 128 129 130 131 132	Solyc03g025180 Solyc03g025190 Solyc03g025200 Solyc03g025210 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025230 Solyc03g025240 Solyc03g025250	Unknown Protein (AHRD V1) Multidrug resistance protein mdtK (AHRD V1 ** MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 ** MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Mate efflux family protein (AHRD V1 ** D7M5Q2_ARALY); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERE8); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE	593 3254 5897 2555 2231 2843 1631 3081
125 126 127 128 129 130 131 132 133	Solyc03g025180 Solyc03g025190 Solyc03g025200 Solyc03g025210 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025220 Solyc03g025230 Solyc03g025240 Solyc03g025250 Solyc03g025260	Unknown Protein (AHRD V1) Multidrug resistance protein mdtK (AHRD V1 ** MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 ** MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Mate efflux family protein (AHRD V1 ** D7M5Q2_ARALY); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_PHOLL); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERE8); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Multidrug resistance protein mdtK (AHRD V1 * MDTK_YERP3); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE Retinoblastoma-binding protein (AHRD V1 * C0P1B5_AJECG); contains Interpro domain(s) IPR014891 DWNN domain	593 3254 5897 2555 2231 2843 1631 3081 1116

135	Solyc03g025280	RNA-binding protein (AHRD V1 ** B6K5V3_SCHJY); contains Interpro domain(s) IPR012677 Nucleotide-binding, alpha- beta plait	18032
136	Solyc03g025290	Hydroxyproline-rich glycoprotein family protein (AHRD V1 ***- D7MRR7_ARALY)	4377
137	Solyc03g025300	Unknown Protein (AHRD V1)	186
138	Solyc03g025310	Sec-independent protein translocase protein tatA/E homolog (AHRD V1 *-*- D4TUR0_9NOST); contains Interpro domain(s) IPR006312 Twin-arginine translocation protein TatA/E	7946
120	Solve03c035220 D5	Hydroxycinnamoyl transferase (AHRD V1 **-*	2040
139	S01yc03g025520 F5	Transferase	3009
140	Solyc03g025330	Unknown Protein (AHRD V1); contains Interpro domain(s) IPR007749 Protein of unknown function DUF677	2462
141	Solyc03g025340	C2 domain-containing protein (AHRD V1 * Q5DVL6_HORVD); contains Interpro domain(s) IPR018029 C2 membrane targeting protein	1050
142	Solyc03g025350	Citrate transporter family protein (AHRD V1 ***- B6U1G3_MAIZE); contains Interpro domain(s) IPR004680 Divalent ion symporter	1469
143	Solyc03g025360	Protein serine/threonine kinase (AHRD V1 *-** D3BP85_POLPA); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	6925
144	Solyc03g025370	Short-chain dehydrogenase/reductase family protein (AHRD V1 ***- B2WS98_9BRAS); contains Interpro domain(s) IPR002347 Glucose/ribitol dehydrogenase	5276
145	Solyc03g025380	Peroxidase (AHRD V1 ***- Q58GF4_9ROSI); contains Interpro domain(s) IPR002016 Haem peroxidase, plant/fungal/bacterial	2515
146	Solyc03g025390	Retinol dehydrogenase 12 (AHRD V1 **** B6TAL8_MAIZE); contains Interpro domain(s) IPR002347 Glucose/ribitol dehydrogenase	3596
147	Solyc03g025400	Retinol dehydrogenase 12 (AHRD V1 **** B6TAL8_MAIZE); contains Interpro domain(s) IPR002347 Glucose/ribitol dehydrogenase	4115
148	Solyc03g025410	Dehydrogenase/reductase SDR family member 13 (AHRD V1 ***- DHR13_BOVIN); contains Interpro domain(s) IPR002347 Glucose/ribitol dehydrogenase	5591
149	Solyc03g025420	SCF ubiquitin ligase skp1 component (AHRD V1 ** D3TMR7_GLOMM); contains Interpro domain(s) IPR001232 SKP1 component	6210
150	Solyc03g025430	Genomic DNA chromosome 5 TAC clone K24M7 (AHRD V1 **- - Q9FHB8_ARATH)	720
151	Solyc03g025440	Zinc finger family protein (AHRD V1 ***- D7MFZ1_ARALY); contains Interpro domain(s) IPR007087 Zinc finger, C2H2-type	5039
152	Solyc03g025450	Receptor-like protein kinase (AHRD V1 *-*- Q9FZP2_ARATH); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	8501
153	Solyc03g025460	Myosin heavy chain-related-like (AHRD V1 ** Q6YYY2_ORYSJ)	3732
154	Solyc03g025470	Kinesin-like protein (AHRD V1 *-*- Q9LZ88_ARATH); contains Interpro domain(s) IPR001752 Kinesin, motor region	5016
155	Solyc03g025480	Unknown Protein (AHRD V1)	3837
156	Solyc03g025490	Gibberellin 20-oxidase-like protein (AHRD V1 **** Q9FGV8_ARATH); contains Interpro domain(s) IPR005123 Oxoglutarate and iron-dependent oxygenase	1421
157	Solyc03g025500	Prolyl 4-hydroxylase alpha subunit-like protein (AHRD V1 ***- Q9LSI6_ARATH); contains Interpro domain(s) IPR006620 Prolyl	3516

		4-hydroxylase, alpha subunit	
158	Solyc03g025510	Calmodulin-binding heat shock protein (AHRD V1 **-* Q1RN86_GOSHI); contains Interpro domain(s) IPR002921 Lipase, class 3	4938
159	Solyc03g025520	60S ribosomal protein L36 (AHRD V1 ***- B9I1L9_POPTR); contains Interpro domain(s) IPR000509 Ribosomal protein L36e	1943
160	Solyc03g025530	S-layer domain protein (AHRD V1 *-*- B2J947_NOSP7); contains Interpro domain(s) IPR001119 S-layer homology region	7522
161	Solyc03g025540	Cleavage and polyadenylation specificity factor subunit 2 (AHRD V1 ** C0HA24_SALSA); contains Interpro domain(s) IPR011108 RNA-metabolising metallo-beta-lactamase	19152
162	Solyc03g025550	Signal peptide peptidase family protein (AHRD V1 ***- D7M8R6_ARALY); contains Interpro domain(s) IPR007369 Peptidase A22B, signal peptide peptidase	5716
163	Solyc03g025560	Undecaprenyl pyrophosphate synthase (AHRD V1 **** UPPS_PYRFU); contains Interpro domain(s) IPR001441 Di-trans- poly-cis-decaprenylcistransferase-like	2204
164	Solyc03g025570	DNA-directed RNA polymerase subunit H (AHRD V1 ***- RPOH_METTH); contains Interpro domain(s) IPR000783 RNA polymerase, subunit H/Rpb5 C-terminal	1469
165	Solyc03g025580	Pectinacetylesterase (Fragment) (AHRD V1 ** C6JT68_9MYRT); contains Interpro domain(s) IPR004963 Pectinacetylesterase	3439
166	Solyc03g025590	Tripeptidyl peptidase II (AHRD V1 ***- Q5VZU9_HUMAN); contains Interpro domain(s) IPR015500 Peptidase S8, subtilisin- related	2881
167	Solyc03g025600	Pectinacetylesterase like protein (Fragment) (AHRD V1 * Q56WP8_ARATH); contains Interpro domain(s) IPR004963 Pectinacetylesterase	8651
168	Solyc03g025610	Subtilisin-like serine protease (AHRD V1 ** D8I1W0_AMYMU); contains Interpro domain(s) IPR015500 Peptidase S8, subtilisin-related	6334
169	Solyc03g025620	Tripeptidyl peptidase II (AHRD V1 ***- Q5VZU9_HUMAN); contains Interpro domain(s) IPR015500 Peptidase S8, subtilisin- related	3625
170	Solyc03g025630	Tripeptidyl-peptidase 2 (AHRD V1 ***- TPP2_BOVIN)	6912
171	Solyc03g025640	Cytochrome P450	4077
172	Solyc03g025650	Glucan-endo-1 3-beta-glucosidase (AHRD V1 **** Q9XFW9_CICAR); contains Interpro domain(s) IPR000490 Glycoside hydrolase, family 17	1108
173	Solyc03g025660	Self-incompatibility protein (Fragment) (AHRD V1 ***- C7FE91_9MAGN); contains Interpro domain(s) IPR010264 Plant self-incompatibility S1	426
174	Solyc03g025670	PAR-1c protein (AHRD V1 ***- Q43589_TOBAC); contains Interpro domain(s) IPR009489 PAR1	1366
175	Solyc03g025680	PAR-1c protein (AHRD V1 ***- Q43589_TOBAC); contains Interpro domain(s) IPR009489 PAR1	1036
176	Solyc03g025690	Unknown Protein (AHRD V1)	716
177	Solyc03g025700	Pentatricopeptide repeat-containing protein (AHRD V1 ***- D7KHY5_ARALY); contains Interpro domain(s) IPR002885 Pentatricopeptide repeat	1620
178	Solyc03g025710	GCN5-related N-acetyltransferase (AHRD V1 ***- B2IU63_NOSP7); contains Interpro domain(s) IPR000182 GCN5- related N-acetyltransferase	2200

179	Solyc03g025720	Long-chain-fatty-acidCoA ligase (AHRD V1 **** C3JN12_RHOER); contains Interpro domain(s) IPR000873 AMP- dependent synthetase and ligase	3847
180	Solyc03g025730	Tubulin beta chain (AHRD V1 ***- B9HP96_POPTR); contains Interpro domain(s) IPR002453 Beta tubulin	3806
181	Solyc03g025740	CCHC zinc finger protein (AHRD V1 * Q9GRG8_9TRYP); contains Interpro domain(s) IPR013084 Zinc finger, CCHC retroviral-type	4040
182	Solyc03g025750	Actin depolymerizing factor 10 (AHRD V1 **** B9I489_POPTR); contains Interpro domain(s) IPR002108 Actin- binding, cofilin/tropomyosin type	1292
183	Solyc03g025760	Glycosyltransferase CAZy family GT90 (Fragment) (AHRD V1 ** D8RT95_SELML); contains Interpro domain(s) IPR008539 Protein of unknown function DUF821, CAP10-like	4381
184	Solyc03g025770	Glycosyltransferase CAZy family GT90 (Fragment) (AHRD V1 ** D8RT95_SELML); contains Interpro domain(s) IPR008539 Protein of unknown function DUF821, CAP10-like	4760
185	Solyc03g025780	Glycosyltransferase CAZy family GT90 (Fragment) (AHRD V1 ** D8SQN9_SELML); contains Interpro domain(s) IPR008539 Protein of unknown function DUF821, CAP10-like	3785
186	Solyc03g025790	Metal ion binding protein (AHRD V1 **-* B6SL50_MAIZE); contains Interpro domain(s) IPR006121 Heavy metal transport/detoxification protein	1408
187	Solyc03g025800	Os03g0111400 protein (Fragment) (AHRD V1 *-*- Q0DVV0_ORYSJ); contains Interpro domain(s) IPR006121 Heavy metal transport/detoxification protein	863
188	Solyc03g025810	Low-temperature-induced 65 kDa protein (AHRD V1 * LTI65_ARATH); contains Interpro domain(s) IPR012418 CAP160	2469
189	Solyc03g025820	Genomic DNA chromosome 5 TAC clone K24M7 (AHRD V1 ***- Q9FHD0_ARATH)	9930
190	Solyc03g025830	Os03g0107400 protein (Fragment) (AHRD V1 * Q0DVY2_ORYSJ)	6194
191	Solyc03g025840	Cytochrome b561 (AHRD V1 ***- Q3LGX5_CITLA); contains Interpro domain(s) IPR004877 Cytochrome b561, eukaryote	2559
192	Solyc03g025850	Remorin 1 (AHRD V1 ***- Q9XEX8_SOLLC); contains Interpro domain(s) IPR005516 Remorin, C-terminal region	2440
193	Solyc03g025860	Vesicle-trafficking protein SEC22b (AHRD V1 ** C1BXX2_ESOLU); contains Interpro domain(s) IPR010908 Longin	2153
194	Solyc03g025870	MYB transcription factor (AHRD V1 **-* Q9LTJ5_ARATH); contains Interpro domain(s) IPR015495 Myb transcription factor	2757
195	Solyc03g025880	Cleavage and polyadenylation specificity factor subunit 5 (AHRD V1 ***- B9EQF4_SALSA); contains Interpro domain(s) IPR016706 Cleavage and polyadenylation specificity factor, 25 kDa subunit	11655
196	Solyc03g025890	DNA mismatch repair protein mutS (AHRD V1 **** B0K9L5_THEP3); contains Interpro domain(s) IPR000432 DNA mismatch repair protein MutS, C-terminal	21025
197	Solyc03g025900	Flap structure-specific endonuclease (AHRD V1 *-*- A8NTE4_COPC7); contains Interpro domain(s) IPR006084 DNA repair protein (XPGC)/yeast Rad	6032
198	Solyc03g025910	Unknown Protein (AHRD V1)	4899
199	Solyc03g025920	F-box family protein (AHRD V1 ***- D7LS19_ARALY); contains Interpro domain(s) IPR001810 Cvclin-like F-box	1459
200	Solyc03g025930	F-box family protein (AHRD V1 ***- D7LS19_ARALY); contains Interpro domain(s) IPR001810 Cyclin-like F-box	1359

201	Solyc03g025940	F-box family protein (AHRD V1 ***- D7LS19_ARALY); contains Interpro domain(s) IPR001810 Cyclin-like F-box	5021
202	Solyc03g025950	Membrane-associated progesterone receptor component 1 (AHRD V1 ***- C0NU44_AJECG); contains Interpro domain(s) IPR001199 Cytochrome b5	2908
203	Solyc03g025960	Unknown Protein (AHRD V1)	201
204	Solyc03g025970	Methyl binding domain protein (AHRD V1 *-*- B9I4C0_POPTR); contains Interpro domain(s) IPR001739 Methyl-CpG DNA binding	5881
205	Solyc03g025980	Peptidyl-prolyl cis-trans isomerase (Fragment) (AHRD V1 ***- A9Y0F6_9MYRT); contains Interpro domain(s) IPR007062 Protein phosphatase inhibitor 2 (IPP-2)	4785
206	Solyc03g025990	Hexulose-6-phosphate isomerase (AHRD V1 ** Q2RUM7_RHORT)	612
207	Solyc03g026000	Unknown Protein (AHRD V1)	2046
208	Solyc03g026010	Transmembrane protein 161B (AHRD V1 *-*- T161B_MOUSE)	1377
209	Solyc03g026020	Heat stress transcription factor (AHRD V1 *-*- D4QAU8_CARPA); contains Interpro domain(s) IPR000232 Heat shock factor (HSF)-type, DNA-binding	1792
210	Solyc03g026030	Os10g0578600 protein (Fragment) (AHRD V1 ***- Q0IVC7_ORYSJ)	1374
211	Solyc03g026040	Receptor like kinase, RLK	4071
212	Solyc03g026050	Terminal flower 1 (Fragment) (AHRD V1 ** B3VT13_9ROSA); contains Interpro domain(s) IPR008914 Phosphatidylethanolamine-binding protein PEBP	952
		Ankyrin repeat-rich protein (AHRD V1 **	
213	Solvc03g026060 P2	C7EC57 NICBE): contains Interpro domain(s) IPR002110	6422
213	Solyc03g026060 P2	C7EC57_NICBE); contains Interpro domain(s) IPR002110 Ankyrin	6422
213 214	Solyc03g026060 P2 Solyc03g026070	C7EC57_NICBE); contains Interpro domain(s) IPR002110 Ankyrin Homeobox-leucine zipper protein ATHB-8 (AHRD V1 *-*- ATHB8_ARATH); contains Interpro domain(s) IPR002913 Lipid- binding START	6422 4456
213214215	Solyc03g026060 P2 Solyc03g026070 Solyc03g026080	C7EC57_NICBE); contains Interpro domain(s) IPR002110 Ankyrin Homeobox-leucine zipper protein ATHB-8 (AHRD V1 *-*- ATHB8_ARATH); contains Interpro domain(s) IPR002913 Lipid- binding START Rhomboid family protein (AHRD V1 ** D7M0H4_ARALY); contains Interpro domain(s) IPR002610 Peptidase S54, rhomboid	6422 4456 2549
213214215216	Solyc03g026060 P2 Solyc03g026070 Solyc03g026070 Solyc03g026080 Solyc03g026090	C7EC57_NICBE); contains Interpro domain(s) IPR002110 Ankyrin Homeobox-leucine zipper protein ATHB-8 (AHRD V1 *-*- ATHB8_ARATH); contains Interpro domain(s) IPR002913 Lipid- binding START Rhomboid family protein (AHRD V1 ** D7M0H4_ARALY); contains Interpro domain(s) IPR002610 Peptidase S54, rhomboid Non-specific lipid-transfer protein (AHRD V1 **** O24485_PINRA); contains Interpro domain(s) IPR013770 Plant lipid transfer protein and hydrophobic protein, helical	6422 4456 2549 697
 213 214 215 216 217 	Solyc03g026060 P2 Solyc03g026070 Solyc03g026080 Solyc03g026090 Solyc03g026100	C7EC57_NICBE); contains Interpro domain(s) IPR002110 Ankyrin Homeobox-leucine zipper protein ATHB-8 (AHRD V1 *-*- ATHB8_ARATH); contains Interpro domain(s) IPR002913 Lipid- binding START Rhomboid family protein (AHRD V1 ** D7M0H4_ARALY); contains Interpro domain(s) IPR002610 Peptidase S54, rhomboid Non-specific lipid-transfer protein (AHRD V1 **** O24485_PINRA); contains Interpro domain(s) IPR013770 Plant lipid transfer protein and hydrophobic protein, helical tRNA-specific adenosine deaminase-like protein 3 (AHRD V1 *- ** C1BNE2_9MAXI); contains Interpro domain(s) IPR016193 Cytidine deaminase-like	6422 4456 2549 697 1197
 213 214 215 216 217 218 	Solyc03g026060 P2 Solyc03g026070 Solyc03g026080 Solyc03g026090 Solyc03g026100 Solyc03g026110	C7EC57_NICBE); contains Interpro domain(s) IPR002110 Ankyrin Homeobox-leucine zipper protein ATHB-8 (AHRD V1 *-*- ATHB8_ARATH); contains Interpro domain(s) IPR002913 Lipid- binding START Rhomboid family protein (AHRD V1 ** D7M0H4_ARALY); contains Interpro domain(s) IPR002610 Peptidase S54, rhomboid Non-specific lipid-transfer protein (AHRD V1 **** O24485_PINRA); contains Interpro domain(s) IPR013770 Plant lipid transfer protein and hydrophobic protein, helical tRNA-specific adenosine deaminase-like protein 3 (AHRD V1 *- ** C1BNE2_9MAXI); contains Interpro domain(s) IPR016193 Cytidine deaminase-like	6422 4456 2549 697 1197 3781
 213 214 215 216 217 218 219 	Solyc03g026060 P2 Solyc03g026070 Solyc03g026080 Solyc03g026090 Solyc03g026100 Solyc03g026110 Solyc03g026120	C7EC57_NICBE); contains Interpro domain(s) IPR002110 Ankyrin Homeobox-leucine zipper protein ATHB-8 (AHRD V1 *-*- ATHB8_ARATH); contains Interpro domain(s) IPR002913 Lipid- binding START Rhomboid family protein (AHRD V1 ** D7M0H4_ARALY); contains Interpro domain(s) IPR002610 Peptidase S54, rhomboid Non-specific lipid-transfer protein (AHRD V1 **** O24485_PINRA); contains Interpro domain(s) IPR013770 Plant lipid transfer protein and hydrophobic protein, helical tRNA-specific adenosine deaminase-like protein 3 (AHRD V1 *- ** C1BNE2_9MAXI); contains Interpro domain(s) IPR016193 Cytidine deaminase-like Calmodulin binding protein (AHRD V1 **** B6STZ4_MAIZE); contains Interpro domain(s) IPR000048 IQ calmodulin-binding region Dehydration-responsive family protein (AHRD V1 ** D7M5L0_ARALY); contains Interpro domain(s) IPR004159 Protein of unknown function DUF248, methyltransferase putative	6422 4456 2549 697 1197 3781 3007
 213 214 215 216 217 218 219 220 	Solyc03g026060 P2 Solyc03g026070 Solyc03g026080 Solyc03g026090 Solyc03g026100 Solyc03g026110 Solyc03g026120 Solyc03g026130	C7EC57_NICBE); contains Interpro domain(s) IPR002110 Ankyrin Homeobox-leucine zipper protein ATHB-8 (AHRD V1 *-*- ATHB8_ARATH); contains Interpro domain(s) IPR002913 Lipid- binding START Rhomboid family protein (AHRD V1 ** D7M0H4_ARALY); contains Interpro domain(s) IPR002610 Peptidase S54, rhomboid Non-specific lipid-transfer protein (AHRD V1 **** O24485_PINRA); contains Interpro domain(s) IPR013770 Plant lipid transfer protein and hydrophobic protein, helical tRNA-specific adenosine deaminase-like protein 3 (AHRD V1 *- ** C1BNE2_9MAXI); contains Interpro domain(s) IPR016193 Cytidine deaminase-like Calmodulin binding protein (AHRD V1 **** B6STZ4_MAIZE); contains Interpro domain(s) IPR000048 IQ calmodulin-binding region Dehydration-responsive family protein (AHRD V1 ** D7M5L0_ARALY); contains Interpro domain(s) IPR004159 Protein of unknown function DUF248, methyltransferase putative Cytochrome P450	6422 4456 2549 697 1197 3781 3007 1796
 213 214 215 216 217 218 219 220 221 	Solyc03g026060 P2 Solyc03g026070 Solyc03g026080 Solyc03g026090 Solyc03g026090 Solyc03g026100 Solyc03g026110 Solyc03g026120 Solyc03g026130 Solyc03g026140	C7EC57_NICBE); contains Interpro domain(s) IPR002110 Ankyrin Homeobox-leucine zipper protein ATHB-8 (AHRD V1 *-*- ATHB8_ARATH); contains Interpro domain(s) IPR002913 Lipid- binding START Rhomboid family protein (AHRD V1 ** D7M0H4_ARALY); contains Interpro domain(s) IPR002610 Peptidase S54, rhomboid Non-specific lipid-transfer protein (AHRD V1 **** O24485_PINRA); contains Interpro domain(s) IPR013770 Plant lipid transfer protein and hydrophobic protein, helical tRNA-specific adenosine deaminase-like protein 3 (AHRD V1 *- ** C1BNE2_9MAXI); contains Interpro domain(s) IPR016193 Cytidine deaminase-like Calmodulin binding protein (AHRD V1 **** B6STZ4_MAIZE); contains Interpro domain(s) IPR000048 IQ calmodulin-binding region Dehydration-responsive family protein (AHRD V1 ** D7M5L0_ARALY); contains Interpro domain(s) IPR004159 Protein of unknown function DUF248, methyltransferase putative Cytochrome P450	6422 4456 2549 697 1197 3781 3007 1796 1744
 213 214 215 216 217 218 219 220 221 222 	Solyc03g026060 P2 Solyc03g026070 Solyc03g026080 Solyc03g026090 Solyc03g026100 Solyc03g026110 Solyc03g026110 Solyc03g026120 Solyc03g026130 Solyc03g026140 Solyc03g026150	C7EC57_NICBE); contains Interpro domain(s) IPR002110 Ankyrin Homeobox-leucine zipper protein ATHB-8 (AHRD V1 *-*- ATHB8_ARATH); contains Interpro domain(s) IPR002913 Lipid- binding START Rhomboid family protein (AHRD V1 ** D7M0H4_ARALY); contains Interpro domain(s) IPR002610 Peptidase S54, rhomboid Non-specific lipid-transfer protein (AHRD V1 **** O24485_PINRA); contains Interpro domain(s) IPR013770 Plant lipid transfer protein and hydrophobic protein, helical tRNA-specific adenosine deaminase-like protein 3 (AHRD V1 *- ** C1BNE2_9MAXI); contains Interpro domain(s) IPR016193 Cytidine deaminase-like Calmodulin binding protein (AHRD V1 **** B6STZ4_MAIZE); contains Interpro domain(s) IPR000048 IQ calmodulin-binding region Dehydration-responsive family protein (AHRD V1 ** D7M5L0_ARALY); contains Interpro domain(s) IPR004159 Protein of unknown function DUF248, methyltransferase putative Cytochrome P450 Ring-h2 finger protein (AHRD V1 *-*- C1ECT6_9CHLO); contains Interpro domain(s) IPR018957 Zinc finger, C3HC4 RING-type	6422 4456 2549 697 1197 3781 3007 1796 1744 4109
 213 214 215 216 217 218 219 220 221 222 223 	Solyc03g026060 P2 Solyc03g026070 Solyc03g026080 Solyc03g026090 Solyc03g026090 Solyc03g026100 Solyc03g026110 Solyc03g026120 Solyc03g026130 Solyc03g026140 Solyc03g026150 Solyc03g026160	C7EC57_NICBE); contains Interpro domain(s) IPR002110 Ankyrin Homeobox-leucine zipper protein ATHB-8 (AHRD V1 *-*- ATHB8_ARATH); contains Interpro domain(s) IPR002913 Lipid- binding START Rhomboid family protein (AHRD V1 ** D7M0H4_ARALY); contains Interpro domain(s) IPR002610 Peptidase S54, rhomboid Non-specific lipid-transfer protein (AHRD V1 **** O24485_PINRA); contains Interpro domain(s) IPR013770 Plant lipid transfer protein and hydrophobic protein, helical tRNA-specific adenosine deaminase-like protein 3 (AHRD V1 *- ** C1BNE2_9MAXI); contains Interpro domain(s) IPR016193 Cytidine deaminase-like Calmodulin binding protein (AHRD V1 **** B6STZ4_MAIZE); contains Interpro domain(s) IPR00048 IQ calmodulin-binding region Dehydration-responsive family protein (AHRD V1 ** D7M5L0_ARALY); contains Interpro domain(s) IPR004159 Protein of unknown function DUF248, methyltransferase putative Cytochrome P450 Ring-h2 finger protein (AHRD V1 *-*- C1ECT6_9CHLO); contains Interpro domain(s) IPR018957 Zinc finger, C3HC4 RING-type F-box family protein (AHRD V1 ***- B9ID33_POPTR)	6422 4456 2549 697 1197 3781 3007 1796 1744 4109 2175

225	Solyc03g026180	Unknown Protein (AHRD V1)	186
226	Solyc03g026190	Transcriptional corepressor SEUSS (AHRD V1 * SEUSS ARATH)	5656
227	Solyc03g026200	Os10g0522500 protein (Fragment) (AHRD V1 *-*- O0IWA4 ORYSJ)	5464
228	Solyc03g026210	Dihydrodipicolinate reductase family protein (AHRD V1 ***- D7MRM8_ARALY); contains Interpro domain(s) IPR011770 Dihydrodipicolinate reductase, bacterial and plant	4130
229	Solyc03g026220	BCL-2 binding anthanogene-1 (AHRD V1 **** B4FV61_MAIZE); contains Interpro domain(s) IPR003103 Apoptosis regulator Bcl-2 protein, BAG	1962
230	Solyc03g026230	Multidrug resistance protein mdtK (AHRD V1 *-*- MDTK_ENT38); contains Interpro domain(s) IPR002528 Multi antimicrobial extrusion protein MatE	1584
231	Solyc03g026240	Arginine/serine-rich splicing factor 31 (AHRD V1 ** D7LSQ1_ARALY); contains Interpro domain(s) IPR000504 RNA recognition motif, RNP-1	4446
232	Solyc03g026250	Response regulator 11 (AHRD V1 *-*- Q0WRT0_ARATH); contains Interpro domain(s) IPR001789 Signal transduction response regulator, receiver region	3008
233	Solyc03g026260	TraB family protein (AHRD V1 *-*- D7KED1_ARALY); contains Interpro domain(s) IPR002816 Pheromone shutdown- related, TraB	2831
234	Solyc03g026270	Ethylene-responsive transcription factor 4 (AHRD V1 *-** ERF78_ARATH); contains Interpro domain(s) IPR001471 Pathogenesis-related transcriptional factor and ERF, DNA-binding	618
235	Solyc03g026280	CRT binding factor 2 (AHRD V1 *-*- B3TPN7_SOLHA); contains Interpro domain(s) IPR001471 Pathogenesis-related transcriptional factor and ERF, DNA-binding	897
236	Solyc03g124110	CRT binding factor 2 (AHRD V1 ***- B3TPN7_SOLHA); contains Interpro domain(s) IPR001471 Pathogenesis-related transcriptional factor and ERF, DNA-binding	867
237	Solyc03g026290	Post-GPI attachment to proteins factor 3 (AHRD V1 ** PGAP3_XENTR); contains Interpro domain(s) IPR007217 Per1- like	8471
238	Solyc03g026300	Post-GPI attachment to proteins factor 3 (AHRD V1 ** PGAP3_XENTR); contains Interpro domain(s) IPR007217 Per1- like	5882
239	Solyc03g026310	ABC transporter permease/ATP-binding protein (AHRD V1 ***- A6ANR0_VIBHA); contains Interpro domain(s) IPR001140 ABC transporter, transmembrane region	10750
240	Solyc03g026320	Lipid A export ATP-binding/permease protein MsbA (AHRD V1 *-*- A4BMK8_9GAMM)	1205
241	Solyc03g026330	Uncharacterized conserved protein (AHRD V1 *-*- Q7VAI6_PROMA)	850
242	Solyc03g026340	Calcium dependent protein kinase 17 (AHRD V1 *-** D8RHF3_SELML); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	4449
243	Solyc03g026350	WD-40 repeat family protein (AHRD V1 ** D7MJ15_ARALY); contains Interpro domain(s) IPR020472 G-protein beta WD-40 repeat, region	8085
244	Solyc03g026360	Peptidoglycan-binding LysM domain-containing protein (AHRD V1 ***- D7MLA8_ARALY); contains Interpro domain(s) IPR018392 Peptidoglycan-binding lysin domain	357
245	Solyc03g026370	Peptidoglycan-binding LysM domain-containing protein (AHRD V1 ***- D7MLA8_ARALY); contains Interpro domain(s) IPR018392 Peptidoglycan-binding lysin domain	336

246	Solyc03g026400	F-box family protein (AHRD V1 ***- D7LS19_ARALY)	357
247	Solyc03g026410	F-box family protein (AHRD V1 *-*- D7LS19_ARALY)	4538
248	Solyc03g031410	Unknown Protein (AHRD V1)	159
249	Solyc03g031420	Molybdenum cofactor sulfurase (AHRD V1 ***- C0S2Y3_PARBP); contains Interpro domain(s) IPR015424 Pyridoxal phosphate-dependent transferase, major region	1776
250	Solyc03g031430	Urease accessory protein UreF (AHRD V1 ***- Q8H1P4_SOYBN); contains Interpro domain(s) IPR002639 Urease accessory protein UreF	729
251	Solyc03g031440	Flavoprotein wrbA (AHRD V1 ***- B6U724_MAIZE)	1016
252	Solyc03g031450	BHLH transcription factor-like protein (AHRD V1 *-*- Q5ZAK6_ORYSJ); contains Interpro domain(s) IPR011598 Helix- loop-helix DNA-binding	3146
253	Solyc03g031460	Pentatricopeptide repeat-containing protein (AHRD V1 ***- D7KN35_ARALY); contains Interpro domain(s) IPR002885 Pentatricopeptide repeat	1140
254	Solyc03g031470	Dihydroflavonol 4-reductase (AHRD V1 **** B9X2I6_ROSHC); contains Interpro domain(s) IPR016040 NAD(P)-binding domain	2611
255	Solyc03g031480	HR7 protein (AHRD V1 ***- Q9SXP0_HYONI); contains Interpro domain(s) IPR009632 Putative metallocarboxypeptidase inhibitor	521
256	Solyc03g031490	HR7 protein (AHRD V1 ***- Q9SXP0_HYONI); contains Interpro domain(s) IPR009632 Putative metallocarboxypeptidase inhibitor	1082
257	Solyc03g031500	HR7 protein (AHRD V1 ***- Q9SXP0_HYONI); contains Interpro domain(s) IPR009632 Putative metallocarboxypeptidase inhibitor	171
258	Solyc03g031510	HR7 protein (AHRD V1 ***- Q9SXP0_HYONI); contains Interpro domain(s) IPR009632 Putative metallocarboxypeptidase inhibitor	608
259	Solyc03g031520	Fruit-specific protein (AHRD V1 ***- FSPM_SOLLC); contains Interpro domain(s) IPR009632 Putative metallocarboxypeptidase inhibitor	786
260	Solyc03g031530	Os01g0786800 protein (Fragment) (AHRD V1 ***- Q0JIP0_ORYSJ); contains Interpro domain(s) IPR002781 Protein of unknown function DUF81	4660
261	Solyc03g031540	Receptor-like protein kinase (AHRD V1 ***- C6F1T6_SOYBN); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	2260
262	Solyc03g031550	Cysteine-rich receptor-like protein kinase (AHRD V1*- C6ZRS1_SOYBN); contains Interpro domain(s) IPR002902 Protein of unknown function DUF26	453
263	Solyc03g031560	UDP-3-O- (AHRD V1 ***- B9RXS8_RICCO); contains Interpro domain(s) IPR011004 Trimeric LpxA-like	6615
264	Solyc03g031570	Dopamine beta-monooxygenase (AHRD V1 ** B6SK92_MAIZE); contains Interpro domain(s) IPR006593 Cytochrome b561/ferric reductase transmembrane	2263
265	Solyc03g031580	Stig1 (Fragment) (AHRD V1 *-*- Q9SBR0_PETHY); contains Interpro domain(s) IPR006969 Stigma-specific protein Stig1	438
266	Solyc03g031590	C4-dicarboxylate transporter/malic acid transport family protein (AHRD V1 ***- D7KUS7_ARALY); contains Interpro domain(s) IPR004695 C4-dicarboxylate transporter/malic acid transport protein	2605
267	Solyc03g031600	Peroxisomal membrane protein PMP22 (AHRD V1 ***- B6TFH7_MAIZE); contains Interpro domain(s) IPR007248	5062

		Mpv17/PMP22	
268	Solyc03g031610	Unknown Protein (AHRD V1)	264
269	Solyc03g031620	Phosphoadenosine phosphosulfate reductase (AHRD V1 *-** B7I7M3_ACIB5); contains Interpro domain(s) IPR004508 Thioredoxin-independent 5'-adenylylsulphate reductase	2917
270	Solyc03g031630	Calcium-binding EF-hand family protein-like (AHRD V1 ***- Q6ZFI7_ORYSJ); contains Interpro domain(s) IPR011992 EF- Hand type	791
271	Solyc03g031640	Unknown Protein (AHRD V1)	165
272	Solyc03g031650	Autophagy-related protein 8 (AHRD V1 ** C1EJ88_9CHLO); contains Interpro domain(s) IPR004241 Light chain 3 (LC3)	2938
273	Solyc03g031660	Unknown Protein (AHRD V1)	4683
274	Solyc03g031670	Calcium-dependent protein kinase (AHRD V1 **** Q8RW36_SOLLC); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	8667
275	Solyc03g031680	Uncharacterized GPI-anchored protein At1g61900 (AHRD V1 ***- UGPI6_ARATH)	4575
276	Solyc03g031690	DNA-directed RNA polymerases I II and III subunit RPABC3 (AHRD V1 ***- B9EM78_SALSA); contains Interpro domain(s) IPR005570 RNA polymerase, Rpb8	4423
277	Solyc03g031700	ABC transporter FeS assembly protein SufB (AHRD V1 ***- C7JBP7_ACEP3); contains Interpro domain(s) IPR010231 SUF system FeS cluster assembly, SufB	3342
278	Solyc03g031710	Genomic DNA chromosome 5 P1 clone MBG8 (AHRD V1 * O9FFT7 ARATH)	2152
279	Solyc03g031720	RNA Binding Protein 45 (AHRD V1 **** Q9LEB4_NICPL); contains Interpro domain(s) IPR000504 RNA recognition motif, RNP-1	6016
280	Solyc03g031730	Beta-glucosidase 47 (AHRD V1 **** D7MEP5_ARALY); contains Interpro domain(s) IPR001360 Glycoside hydrolase, family 1	11145
281	Solyc03g031740	Glucose-6-phosphate/phosphate translocator 2 (AHRD V1 **** D7KVF2_ARALY); contains Interpro domain(s) IPR004696 Tpt phosphate/phosphoenolpyruvate translocator	2994
282	Solyc03g031750	Vacuolar protein sorting-associated protein 28 family protein (AHRD V1 ***- D7MES4_ARALY); contains Interpro domain(s) IPR007143 Vacuolar protein sorting-associated, VPS28	630
283	Solyc03g031760	Homeobox-leucine zipper protein ATHB-14 (AHRD V1 *-*- ATB14_ARATH); contains Interpro domain(s) IPR002913 Lipid- binding START	3703
284	Solyc03g031770	Rop-interactive crib motif-containing protein 1 (AHRD V1 * D7LGA6_ARALY); contains Interpro domain(s) IPR000095 PAK-box/P21-Rho-binding	3232
285	Solyc03g031780	Unknown Protein (AHRD V1)	1880
286	Solyc03g031790	Magnesium transporter protein 1 (AHRD V1 **_* C1BXI2_ESOLU); contains Interpro domain(s) IPR006844 OST3/OST6	1023
287	Solyc03g031800	Xyloglucan endotransglucosylase/hydrolase 1 (AHRD V1 **** C0IRG0_9ERIC); contains Interpro domain(s) IPR016455 Xyloglucan endotransglucosylase/hydrolase	2179
288	Solyc03g031810	Translation initiation factor SUI1 (AHRD V1 **** Q7RQ93_PLAYO); contains Interpro domain(s) IPR005874 Eukaryotic translation initiation factor SUI1	1447
289	Solyc03g031820	Tyrosyl-DNA phosphodiesterase 1 (AHRD V1 ****	11038

		B8JJC1_MOUSE); contains Interpro domain(s) IPR010347 Tyrosyl-DNA phosphodiesterase	
300	Solyc03g031830	Zinc finger family protein (AHRD V1 *-*- D7MVE2_ARALY); contains Interpro domain(s) IPR001841 Zinc finger, RING-type	738
301	Solyc03g031840	Expansin (AHRD V1 ***- Q9ZP33_SOLLC); contains Interpro domain(s) IPR007112 Expansin 45, endoglucanase-like IPR007117 Pollen allergen/expansin, C-terminal	2733
302	Solyc03g031850	Unknown Protein (AHRD V1)	1083
303	Solyc03g031860 R	Phytoene synthase 1 (PSY1)	3994

Figura 9 - Géis de agarose 1,5% com iniciadores CAPS ou SCAR descritos na Tabela 2 e o DNA genômico de *Solanum pennellii* (Pe), *Solanum peruvianum* (Pr), Micro-MSK, MT, MT-*Rg1*, MT-*wf* e dos recombinantes R1, R2, R4, R6, R16, R25, R26. (A) Reação de digestão com iniciador P1 (CAPS), digerido por Hinf I. Foram carregados no gel 25 μ L da reação mais 2 μ L de syber. (B) Reação de PCR com iniciador P5 (SCAR). Foram carregados no gel 5 μ L da reação mais 2 μ L de syber e 5 μ L de H₂O.

Figura 10 - Localização do segmento contendo o gene *RG1* (amarelo) no cromossomo 3. O segmento em vermelho indica a posição entre os marcadores P1 e P5. A posição cromossômica de marcadores moleculares descritos na Tabela 2 e dos genes correspondentes às mutações *white flower* (*CrtR-b*) e *yellow flesh* (*PSY1*) são representados. Um total de 136 genes, descritos na Tabela 3 está presente entre os marcadores *CrtR-b* e P5.

Entre os 136 genes da lista desta região, destacam-se alguns candidatos, sendo o principal o gene *GRAS 10*. Este gene despertou nosso interesse, pois o alelo *Rg1* apresentou fortes interações com os mutantes de tomateiro *procera (pro)* e *lateral supresser (ls)* (LOMBARDi, 2008), sendo ambos pertecentes à família GRAS. O mutante *pro* possui resposta constitutiva a giberelina (GA), por apresentar perda de função em uma proteína DELLA (JASINSKI et al., 2008). O mutante *ls* foi caracterizado molecularmente como uma mutação levando à perda completa da função de uma proteína reguladora com domínio VHIID da família GRAS, da qual fazem parte moléculas como a proteína DELLA (SCHUMACHER et al., 1999). Lombardi (2008) mostrou que o alelo *Rg1* é capaz de reverter a ausência de ramificação destas mutações ao obter duplos mutantes entre elas e *Rg1*, além de aumentar a formação tanto de gemas quanto raízes *in vitro* a qual é muito baixa em *pro*. Porém, não se pode supor que o alelo *Rg1* é um mutante em giberelina, pois diferentemente de mutantes com baixo nível endógeno ou baixa sensibilidade a este hormônio, como *gib1*, *gib2* e *gib3* (KOORNNEEF et al., 1990), a linhagem contendo *Rg1* apresenta germinação semelhante a observada em MT (LOMBARDI, 2008).

4.5 Estudo dos perfis transcricionais por RNA-Seq na plataforma SOLiD 3

Para a obtenção dos perfis transcricionais, foi realizado sequenciamento do transcriptoma (RNA-Seq) de explantes cotiledonares com 8 dias, inoculados por 24 horas em

RIM, de MT e MT-*Rg1*. O tratamento foi escolhido por fazer parte do período no qual tanto MT quanto MT-*Rg1* estariam na fase de aquisição de competência (Figura 4). O processo de sequenciamento incluiu o cultivo das plântulas que forneceram os explantes em questão, a extração de RNA dos mesmos e a construção das bibliotecas. Nesta rodada foram sequenciados quatro slides, réplicas técnicas, contendo as duas amostras em questão, sendo obtidos aproximadamente cem mil *reads* por amostra. Estes experimentos foram realizados no Instituto Ludwig de Pesquisa sobre o Câncer, em colaboração com a Dra. Anamaria Aranha Camargo que gentilmente disponibilizou a infra-estrutura de seu laboratório, e a Profa. Dra. Marie-Anne Van Sluys, que gentilmente disponibilizou os reagentes utilizados para o sequenciamento. O Dr. João Paulo Kitajima, do Hospital Albert Einstein, colaborou no manejo e análise dos dados.

O aproveitamento do processo de sequenciamento, desde a deposição das *beads* em cada *slide*, até a seleção de *reads* com alta qualidade, foi de 71,1%, 80,5%, 76,5% e 60,7%, respectivamente para cada um dos quatro *slides*. Ao final do processo foram consideradas para análise somente sequências lidas integralmente. Falhas de leitura não foram consideradas. O conjunto de *reads* de alta qualidade gerado pelo sequenciamento foi comparado com o banco de dados do Sol Genomics Network, utilizando-se as anotações genômicas de ITAG1. Desta forma, os *reads* obtidos foram comparados as sequências dos 33.926 genes deste banco de dados. Em seguida foi feita a normalização, tratamento estatístico e análise dos dados. Uma análise do componente principal PCA ("Principal Component Analysis") demonstrou claramente que o padrão de agrupamento entre as amostras dos quatro slides separou as amostras de MT das de MT-*Rg1* (Figura 11). Isto indica que os perfis de transcrição obtidos apresentaram uma significativa diferença entre as expressões dos genes para estes dois genótipos.

Ao comparar os genes diferencialmente expressos de MT-Rg1 e MT, observou-se que existem mais genes regulados negativamente do que positivamente em MT-Rg1 (Figura 12). Como muitos genes apresentaram diferenças na sua expressão, foram selecionados aqueles que apresentam $p \le 0,005$ e *fold change* ≥ 2 (destacados em vermelho na Figura 12). Com isso, o número foi reduzido para 361 genes diferencialmente expressos (Tabela 4). Porém, este ainda representava um considerável número de genes a serem validados por qRT-PCR, o que nos levou a selecionar inicialmente 5 genes para análise de qRT-PCR, sendo feito o Box plot mostrando o total de *reads* obtidos pelo sequenciamento de cada um deles (Figura 13). Embora o gene *GRAS 10* selecionado na Tabela 3 não estivesse entre os referidos 361 genes,

este também foi validado devido a uma forte interação entre MT-*Rg1* e mutantes para a família GRAS (*procera* e *lateral suppresser*).

Figura 11 - Análise do componente principal PCA ("Principal Component Analysis") demonstrando claramente que o padrão de agrupamento entre as amostras dos quatro slides separou as amostras de MT (vermelho) das de MT-*Rg1* (azul).

Figura 12 - Representação os genes diferencialmente expressos em MT-Rg1 quando comparados aos de MT. O gráfico apresenta um número maior de genes regulados negativamente, sendo destacados em vermelho os genes que apresentam $p \le 0,005$ e *fold change* ≥ 2 . Estes genes encontram-se descritos na Tabela 3. Para a análise de expressão foram utilizados explantes de cotilédones com 8 dias que permaneceram 1 dia em meio com ANA.

Tabela 4 - Lista dos genes diferencialmente expressos em Rg1 obtida através do sequenciamento pela plataforma SOLiD 3. Foram selecionados os genes conforme os seguintes parâmetros: *Total gene reads* \geq 10; $p \leq 0,005$ e *fold change* \geq 2. Encontram-se destacados na tabela os genes selecionados para a validação por qRT-PCR.

Nome	Fold Change	Descrição	Chr	ITAG 2.3
SL1.00sc04765 _116.1.1	244,32	Serine/threonine protein phosphatase 7 long form homolog (AHRD V1 **-NG Q9LNG5); contains Interpro domain(s) IPR019557 Aminotransferase-like, plant mobile domain	11	SGN- U573342
SL1.00sc02745 _143.1.1	17,53	Laccase 1a (AHRD V1 ***NG B9IG56_POPTR); contains Interpro domain(s) IPR017761 Laccase	10	SGN- U601837
SL1.00sc03032 _2.1.1	13,94	AtUGT85A4 UDP-glucosyl transferase 85A4 UDP- glycosyltransferase/ glucuronosyltransferase/ transferase transferring hexosyl groups (AHRD V1 *-*G AT1G78270.1); contains Interpro domain(s) IPR002213 UDP-glucuronosyl/UDP- glucosyltransferase	3	SGN- U572406
SL1.00sc06118 _25.1.1	12,04	Pectin methylesterase inhibitor-like protein (AHRD V1 ***G B0LVF5_CAPAN); contains Interpro domain(s) IPR006501 Pectinesterase inhibitor	3	SGN- U578419
SL1.00sc03462 _32.1.1	8,83	UGT85A1 UDP-glycosyltransferase/ cis-zeatin O-beta-D- glucosyltransferase/ glucuronosyltransferase/ trans-zeatin O-beta- D-glucosyltransferase/ transferase transferring glycosyl groups / transferase transferring hexosyl groups (AHRD V1 *-*G AT1G22400.1); contains Interpro domain(s) IPR002213 UDP- glucuronosyl/UDP-glucosyltransferase	3	SGN- U568834
SL1.00sc05253 _127.1.1	6,58	Farnesyl pyrophosphate synthase (AHRD V1 ***NG O65004_SOLLC); contains Interpro domain(s) IPR008949 Terpenoid synthase	10	SGN- U592369
SL1.00sc05948 _75.1.1	4,99	Organ-specific protein S2 (AHRD V1 ***NG P17772)	10	SGN- U575774
SL1.00sc05575 _152.1.1	4,57	Ubiquitin ligase SINAT5-related (Seven in absentia protein family) (AHRD V1 **-G Q1EP48_MUSBA); contains Interpro domain(s) IPR004162 Seven in absentia protein	6	SGN- U570958
SL1.00sc04444 _193.1.1	3,74	Unknown Protein (AHRD V1); contains Interpro domain(s) IPR006946 Protein of unknown function DUF642	1	SGN- U572824
SL1.00sc00395 _488.1.1	3,71	NHL repeat-containing protein (AHRD V1 *-*NG AT1G23890.2); contains Interpro domain(s) IPR001258 NHL repeat	5	SGN- U567741
SL1.00sc04007 _8.1.1	3,66	Late embryogenesis abundant protein (AHRD V1 ***NG Q2QKE8_CATRO)	3	SGN- U577419
SL1.00sc05858 _815.1.1	3,66	glycoside hydrolase family 28 protein / polygalacturonase pectinase family protein (AHRD V1 ***G AT1G02460.1); contains Interpro domain(s) IPR012334 Pectin lyase fold	1	SGN- U598686
SL1.00sc03007 _1.1.1	3,6	Unknown Protein (AHRD V1)	2	SGN- U568867
SL1.00sc06070 _163.1.1	3,45	nodulin MtN21 family protein (AHRD V1 ***NG AT2G37460.1); contains Interpro domain(s) IPR000620 Protein of unknown function DUF6, transmembrane	9	SGN- U565049
SL1.00sc05390 _268.1.1	3,39	wound-responsive protein-related (AHRD V1 ***NG AT4G28240.1)	7	SGN- U577432
SL1.00sc04788 _216.1.1	3,14	Pentatricopeptide repeat-containing protein At2g39620 (AHRD V1 ***NG O80647); contains Interpro domain(s) IPR002885 Pentatricopeptide repeat	4	SL2.40ch 04
SL1.00sc04168 _153.1.1	2,91	cYP-71-B10 electron carrier/ heme binding / iron ion binding / monooxygenase/ oxygen binding (AHRD V1 ***G AT5G57260.1); contains Interpro domain(s) IPR002401 Cytochrome P450, E-class, group I	4	SGN- U576966
SL1.00sc03897 _44.1.1	2,84	Ribosomal protein S19 (AHRD V1 ***NG Q5MA05_TOBAC); contains Interpro domain(s) IPR002222 Ribosomal protein	5	SL2.40ch 05

		S19/S15		
SL1.00sc05575 _118.1.1	2,8	NF-X1-type zinc finger protein NFXL1 (AHRD V1 ***NG A0JMY5); contains Interpro domain(s) IPR000967 Zinc finger, NF-X1-type	6	SGN- U583527
SL1.00sc02102 _59.1.1	2,68	BIGYIN binding (AHRD V1 *NG AT3G57090.1); contains Interpro domain(s) IPR016543 Tetratricopeptide repeat 11 Fission 1 protein	12	SGN- U580451
SL1.00sc06004 _386.1.1	2,61	Histone H2A (AHRD V1 ***NG C6TMV8_SOYBN); contains Interpro domain(s) IPR002119 Histone H2A	11	SGN- U577317
SL1.00sc00510 _7.1.1	2,47	Mitochondrial alanine-glyoxylate transaminase (Fragment) (AHRD V1 *-*G Q1KTK6_SOLCI); contains Interpro domain(s) IPR005814 Aminotransferase class-II	4	SGN- U583520
SL1.00sc02745 _71.1.1	2,37	SEC14 cytosolic factor family protein / phosphoglyceride transfer family protein (AHRD V1 ***NG AT3G51670.1); contains Interpro domain(s) IPR001251 Cellular retinaldehyde- binding/triple function, C-terminal	9	SGN- U583419
SL1.00sc07122 _102.1.1	2,34	Sucrose synthase (AHRD V1 ***G O82693_SOLLC); contains Interpro domain(s) IPR012820 Sucrose synthase, plants and cyanobacteria IPR000368 Sucrose synthase	12	SGN- U577970
SL1.00sc01881 _112.1.1	2,29	Aromatic amino acid decarboxylase 1A (AHRD V1 ***NG Q1KSC6_SOLLC); contains Interpro domain(s) IPR002129 Pyridoxal phosphate-dependent decarboxylase	8	SGN- U578638
SL1.00sc04337 _261.1.1	2,28	transferase family protein (AHRD V1 ***G AT2G39980.1); contains Interpro domain(s) IPR003480 Transferase	5	SGN- U565216
SL1.00sc03946 _8.1.1	2,27	DNA mismatch repair protein Msh6-2 (AHRD V1 ***NG Q9SMV7)	7	SGN- U601699
SL1.00sc04765 _78.1.1	2,17	Armadillo repeat-containing protein 8 (AHRD V1 ***NG Q2KI54); contains Interpro domain(s) IPR011989 Armadillo-like helical	11	SGN- U565311
SL1.00sc01556 _23.1.1	2,14	CTD small phosphatase-like protein 2 (AHRD V1 *-*NG Q54GB2); contains Interpro domain(s) IPR011948 Dullard-like phosphatase domain	4	SGN- U565491
SL1.00sc07184 _454.1.1	2,1	mitochondrial substrate carrier family protein (AHRD V1 *-*NG AT4G15010.2); contains Interpro domain(s) IPR001993 Mitochondrial substrate carrier	11	SGN- U568458
SL1.00sc05103 _121.1.1	2,01	L-ascorbate oxidase/ copper ion binding / oxidoreductase (AHRD V1 ***G AT5G21105.1); contains Interpro domain(s) IPR017760 L-ascorbate oxidase, plants	11	SGN- U581988
SL1.00sc05858 _337.1.1	2,01	FUNCTIONS IN molecular_function unknown INVOLVED IN biological_process unknown LOCATED IN cellular_component unknown EXPRESSED IN 23 plant structures EXPRESSED DURING 12 growth stages (AHRD V1 *-*NG AT3G61800.1); contains Interpro domain(s) IPR018610 Protein of unknown function DUF2043	1	SGN- U567790
SL1.00sc02164 166.1.1	-2	Tic22 (AHRD V1 ***NG Q9ZST9_PEA); contains Interpro domain(s) IPR007378 Tic22-like	4	SGN- U569319
SL1.00sc02484 88.1.1	-2	Unknown Protein (AHRD V1)	5	SGN- U578880
SL1.00sc03187 _251.1.1	-2,01	Photosystem I reaction center subunit III, chloroplastic (AHRD V1 ***NG P46486); contains Interpro domain(s) IPR003666 Photosystem I reaction centre protein PsaF, subunit III	2	SGN- U579583
SL1.00sc03996 _3.1.1	-2,01	FUNCTIONS IN molecular_function unknown INVOLVED IN biological_process unknown LOCATED IN cellular_component unknown EXPRESSED IN 25 plant structures EXPRESSED DURING 15 growth stages (AHRD V1 *-*NG AT2G32910.1); contains Interpro domain(s) IPR013989 Development and cell death domain	6	SGN- U564352
SL1.00sc05409 _2.1.1	-2,01	Diacylglycerol kinase 1 (AHRD V1 ***G Q39017); contains Interpro domain(s) IPR001206 Diacylglycerol kinase, catalytic	12	SGN- U600173

		region		
SL1.00sc07408 _369.1.1	-2,01	Ribosomal protein L11 methyltransferase-like protein (AHRD V1 ***G Q9FN34_ARATH); contains Interpro domain(s) IPR010456 Ribosomal L11 methyltransferase	7	SGN- U568825
SL1.00sc01435 _58.1.1	-2,02	Glutamyl-tRNA(Gln) amidotransferase subunit A (AHRD V1 ***NG Q2NHN5); contains Interpro domain(s) IPR000120 Amidase signature enzyme	10	SGN- U572584
SL1.00sc03187 _116.1.1	-2,02	SET domain-containing protein (AHRD V1 ***NG AT5G14260.2); contains Interpro domain(s) IPR001214 SET	2	SGN- U576415
SL1.00sc07000 _30.1.1	-2,02	Thioredoxin M-type 4, chloroplastic (AHRD V1 ***NG Q9SEU6); contains Interpro domain(s) IPR005746 Thioredoxin	12	SGN- U569423
SL1.00sc00090 _207.1.1	-2,03	ALDH3H1 ALDEHYDE DEHYDROGENASE 3H1 3- chloroallyl aldehyde dehydrogenase/ aldehyde dehydrogenase NAD (AHRD V1 ***G AT1G44170.2); contains Interpro domain(s) IPR012394 Aldehyde dehydrogenase NAD(P)- dependent IPR015590 Aldehyde dehydrogenase	2	SL2.40ch 02
SL1.00sc03823 _42.1.1	-2,03	GDSL esterase/lipase At3g48460 (AHRD V1 ***G Q9STM6); contains Interpro domain(s) IPR001087 Lipase, GDSL	3	SGN- U563797
SL1.00sc04168 _3.1.1	-2,03	leucine-rich repeat family protein (AHRD V1 *-*NG AT4G20940.1); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	4	SGN- U568353
SL1.00sc07184 _153.1.1	-2,03	Zinc-binding alcohol dehydrogenase (AHRD V1 ***G Q2IED1_ANADE); contains Interpro domain(s) IPR002085 Alcohol dehydrogenase superfamily, zinc-containing	11	SGN- U572059
SL1.00sc07408 _502.1.1	-2,03	ATGSTU25 GLUTATHIONE S-TRANSFERASE TAU 25 glutathione transferase (AHRD V1 *-*G AT1G17180.1); contains Interpro domain(s) IPR004046 Glutathione S-transferase, C- terminal	7	SGN- U579407
SL1.00sc00510 _26.1.1	-2,04	heavy-metal-associated domain-containing protein / copper chaperone CCH -related (AHRD V1 ***G AT4G39700.1); contains Interpro domain(s) IPR006121 Heavy metal transport/detoxification protein	4	SGN- U573520
SL1.00sc02749 _342.1.1	-2,05	Genomic DNA chromosome 5 P1 clone MDC12 (AHRD V1 **- NG Q9FML7_ARATH); contains Interpro domain(s) IPR001251 Cellular retinaldehyde-binding/triple function, C-terminal	3	SGN- U587656
SL1.00sc06019 _403.1.1	-2,05	calcineurin-like phosphoesterase family protein (AHRD V1 ***NG AT1G07010.1); contains Interpro domain(s) IPR004843 Metallophosphoesterase	6	SGN- U566003
SL1.00sc00395 _118.1.1	-2,06	NBS-coding resistance gene analog (Fragment) (AHRD V1 *- *NG B3V819_TOBAC); contains Interpro domain(s) IPR002182 NB-ARC	5	SGN- U578068
SL1.00sc02102 _181.1.1	-2,06	Heat stress transcription factor A-5 (AHRD V1 ***G Q94BZ5); contains Interpro domain(s) IPR000232 Heat shock factor (HSF)- type, DNA-binding	12	SGN- U568287
SL1.00sc02102 _292.1.1	-2,06	Cationic amino acid transporter (AHRD V1 *-*NG B9ICY5_POPTR); contains Interpro domain(s) IPR015606 Cationic amino acid transporter	12	SGN- U583443
SL1.00sc02749 _241.1.1	-2,06	protein binding / zinc ion binding (AHRD V1 *-*NG AT5G62910.1); contains Interpro domain(s) IPR001841 Zinc finger, RING-type	3	SGN- U580772
SL1.00sc03823 _110.1.1	-2,06	nodulin family protein (AHRD V1 *-*NG AT5G14120.1); contains Interpro domain(s) IPR010658 Nodulin-like	3	SGN- U598683
SL1.00sc04130 _83.1.1	-2,06	2-succinylbenzoateCoA ligase (AHRD V1 ***NG C5D6U5); contains Interpro domain(s) IPR000873 AMP-dependent synthetase and ligase	7	SGN- U571082
SL1.00sc04007 _402.1.1	-2,07	ARF2 AUXIN RESPONSE FACTOR 2 protein binding / transcription factor (AHRD V1 ***G AT5G62000.3); contains Interpro domain(s) IPR003311 AUX/IAA protein	3	SGN- U591913
SL1.00sc04337	-2,07	Ras-like protein (Fragment) (AHRD V1 *-*NG	5	SGN-

_205.1.1		Q8SAF8_9STRA); contains Interpro domain(s) IPR002078 RNA polymerase sigma factor 54 interaction		U577954
SL1.00sc06019	-2,07	Unknown Protein (AHRD V1)	6	SGN- 11506200
402.1.1		Turaming hudrosycinnemoul transformed (AHDD V1 ***NG		0390290
SL1.00sc01881 _115.1.1	-2,08	Q8H9D9_SOLTU); contains Interpro domain(s) IPR000182 GCN5-related N-acetyltransferase	8	SGN- U579042
SL1.00sc05858 1072.1.1	-2,08	Unknown Protein (AHRD V1); contains Interpro domain(s) IPR008511 Protein of unknown function DUF793	1	SGN- U574810
SL1.00sc06818 _87.1.1	-2,08	DNA-directed RNA polymerase subunit beta (AHRD V1 *-*NG Q6EW56); contains Interpro domain(s) IPR002379 ATPase, F0/V0 complex, subunit C	10	SL2.40ch 10
SL1.00sc07405 _9.1.1	-2,08	Receptor-like-kinase (Fragment) (AHRD V1 *-*G Q700L8_9POAL); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	4	SGN- U582727
SL1.00sc00226 _31.1.1	-2,09	Photosystem I reaction center subunit IX (AHRD V1 *-*NG C7BF92_9POAL); contains Interpro domain(s) IPR002615 Photosystem I reaction centre, subunit IX / PsaJ	1	SL2.40ch 01
SL1.00sc03736 _199.1.1	-2,09	Unknown Protein (AHRD V1)	4	SGN- U583612
SL1.00sc07240 _95.1.1	-2,09	Ubiquitin carrier protein (AHRD V1 ***G Q5ZFS3_PLAMJ); contains Interpro domain(s) IPR000608 Ubiquitin-conjugating enzyme, E2	3	SGN- U565335
SL1.00sc03179 _61.1.1	-2,1	UGT73C6 UDP-glucosyl transferase 73C6 UDP- glucosyltransferase/ UDP-glycosyltransferase/ quercetin 3-O- glucosyltransferase/ quercetin 4'-O-glucosyltransferase/ quercetin 7-O-glucosyltransferase/ transferase transferring glycosyl groups (AHRD V1 *-*G AT2G36; contains Interpro domain(s) IPR002213 UDP-glucuronosyl/UDP-glucosyltransferase	12	SGN- U580322
SL1.00sc06004 _133.1.1	-2,1	elongation factor 1-alpha / EF-1-alpha (AHRD V1 ***G AT5G60390.3); contains Interpro domain(s) IPR004539 Translation elongation factor EF1A, eukaryotic and archaeal	11	SGN- U580191
SL1.00sc06183 _217.1.1	-2,11	ATP-dependent Clp protease ATP-binding subunit clpA homolog (AHRD V1 *-*G Q9TM05); contains Interpro domain(s) IPR004176 Clp, N-terminal	3	SGN- U569291
SL1.00sc04956 77.1.1	-2,12	GTP-binding protein (AHRD V1 **-G Q9FJN8_ARATH); contains Interpro domain(s) IPR015595 Rab11-related	4	SGN- U569627
SL1.00sc06019 _323.1.1	-2,12	Unknown Protein (AHRD V1)	6	SGN- U588603
SL1.00sc00226 _207.1.1	-2,13	Ras-like GTP-binding protein (AHRD V1 ***G Q9SN35_ARATH); contains Interpro domain(s) IPR015595 Rab11-related	2	SGN- U578944
SL1.00sc07122 _81.1.1	-2,13	RING-box protein (AHRD V1 ***NG Q2PYP4_ARAHY); contains Interpro domain(s) IPR018957 Zinc finger, C3HC4 RING-type	12	SGN- U563788
SL1.00sc01435 _86.1.1	-2,14	UDP-glucosyltransferase family 1 protein (AHRD V1 ***G C6KI43_CITSI); contains Interpro domain(s) IPR002213 UDP- glucuronosyl/UDP-glucosyltransferase	10	SGN- U578227
SL1.00sc05858 _146.1.1	-2,14	plastocyanin-like domain-containing protein (AHRD V1 *NG AT1G08500.1); contains Interpro domain(s) IPR003245 Plastocyanin-like	1	SGN- U582455
SL1.00sc02102 _82.1.1	-2,15	Sentrin-specific protease 2 (AHRD V1 *-*G B6TMK2_MAIZE); contains Interpro domain(s) IPR003653 Peptidase C48, SUMO/Sentrin/Ubl1	12	SGN- U567105
SL1.00sc02749 _112.1.1	-2,15	Unknown Protein (AHRD V1)	3	SGN- U578374
SL1.00sc02749 _119.1.1	-2,15	ABC transporter family protein (Fragment) (AHRD V1 ***NG B9N4E9_POPTR); contains Interpro domain(s) IPR001140 ABC transporter, transmembrane region	3	SGN- U596115

SL1.00sc06819 64.1.1	-2,15	Post-GPI attachment to proteins factor 3 (AHRD V1 ***NG O0VFE3): contains Interpro domain(s) IPR007217 Per1-like	6	SGN- U575913
SL1.00sc07122 76.1.1	-2,15	PSBX photosystem II subunit X (AHRD V1 ***NG AT2G06520.1); contains Interpro domain(s) IPR009518	12	SGN- U579443
SL1.00sc02597 _317.1.1	-2,16	GEK1 GEK01 D-aminoacyl-tRNA deacylase (AHRD V1 ***G AT2G03800.1); contains Interpro domain(s) IPR007508 D- aminoacyl-tRNA deacylase	6	SGN- U568880
SL1.00sc04765 _187.1.1	-2,16	Arogenate/prephenate dehydratase (AHRD V1 ***G B9HQT5_POPTR); contains Interpro domain(s) IPR001086 Prephenate dehydratase	11	SGN- U583010
SL1.00sc00092 _3.1.1	-2,17	Triacylglycerol lipase 1 (AHRD V1 ***G Q71DJ5)	11	SGN- U583486
SL1.00sc02618 _123.1.1	-2,17	CBS domain-containing protein (AHRD V1 *-*NG AT1G69800.1); contains Interpro domain(s) IPR000644 Cystathionine beta-synthase, core	1	SGN- U567667
SL1.00sc02745 _78.1.1	-2,17	WRKY-like transcription factor (AHRD V1 ***G Q06B53_SOLPE); contains Interpro domain(s) IPR003657 DNA- binding WRKY	9	SGN- U577212
SL1.00sc05253 _27.1.1	-2,17	Kinase-like protein (Fragment) (AHRD V1 *-*G C7A7P2_CORAV); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	10	SGN- U574159
SL1.00sc05253 _64.1.1	-2,17	Unknown Protein (AHRD V1); contains Interpro domain(s) IPR019153 DDRGK domain	10	SGN- U582552
SL1.00sc06183 _231.1.1	-2,17	Alpha-L-fucosidase 1 (AHRD V1 ***NG Q8GW72); contains Interpro domain(s) IPR013781 Glycoside hydrolase, subgroup, catalytic core	3	SL2.40ch 03
SL1.00sc04007 _590.1.1	-2,18	Flavonoid 3'-monooxygenase (AHRD V1 **-G Q9SD85); contains Interpro domain(s) IPR002401 Cytochrome P450, E- class, group I	3	SGN- U573255
SL1.00sc06183 _303.1.1	-2,18	Unknown Protein (AHRD V1); contains Interpro domain(s) IPR004253 Protein of unknown function DUF231, plant	3	SGN- U589178
SL1.00sc04444 _101.1.1	-2,19	ATPUP11 purine transmembrane transporter (AHRD V1 ***G AT1G44750.2); contains Interpro domain(s) IPR004853 Protein of unknown function DUF250	1	SGN- U583724
SL1.00sc05575 _109.1.1	-2,19	AL1 ALFIN-LIKE 1 DNA binding / methylated histone residue binding (AHRD V1 *-*G AT5G05610.2); contains Interpro domain(s) IPR019787 Zinc finger, PHD-finger	6	SGN- U576193
SL1.00sc03540 _83.1.1	-2,2	TBC1 domain family member 2B (AHRD V1 ***NG Q28CB1); contains Interpro domain(s) IPR000195 RabGAP/TBC	12	SGN- U575006
SL1.00sc02102 _410.1.1	-2,21	Zinc finger CCCH domain-containing protein 6 (AHRD V1 ***NG Q56XU4); contains Interpro domain(s) IPR000571 Zinc finger, CCCH-type	12	SGN- U564184
SL1.00sc05390 _245.1.1	-2,21	ULT2 ULTRAPETALA 2 DNA binding (AHRD V1 ***NG AT2G20825.1); contains Interpro domain(s) IPR000770 SAND	7	SGN- U586255
SL1.00sc05858 _758.1.1	-2,21	Iron-sulfur cluster assembly 2 homolog, mitochondrial (AHRD V1 ***NG Q9DCB8); contains Interpro domain(s) IPR016092 FeS cluster insertion	1	SGN- U573683
SL1.00sc05253 _95.1.1	-2,22	FUNCTIONS IN molecular_function unknown INVOLVED IN biological_process unknown LOCATED IN cellular_component unknown EXPRESSED IN 23 plant structures EXPRESSED DURING 15 growth stages (AHRD V1 ***NG AT3G21610.1); contains Interpro domain(s) IPR003832 Acid phosphatase/vanadium-dependent haloperoxidase related	10	SGN- U563901
SL1.00sc05858 _296.1.1	-2,22	JAR1 JASMONATE RESISTANT 1 ATP binding / adenylyltransferase/ catalytic/ jasmonate-amino synthetase (AHRD V1 ***G AT2G46370.2); contains Interpro domain(s) IPR004993 GH3 auxin-responsive promoter	1	SGN- U585803
SL1.00sc02102	-2,24	Ran GTPase binding / chromatin binding / zinc ion binding	12	SGN-

_61.1.1		(AHRD V1 *NG AT5G19420.1); contains Interpro domain(s)	1	U602264
		IPR009091 Regulator of chromosome condensation/beta-	l	
		lactamase-inhibitor protein II	1	
SI 1 00==07194		UDP-glycosyltransferase/ transferase transferring glycosyl groups		SCN
SL1.00SC0/184	-2,24	(AHRD V1 ***G AT4G36770.1); contains Interpro domain(s)	11	SGN-
_419.1.1		IPR002213 UDP-glucuronosyl/UDP-glucosyltransferase	l	0308311
GL 1 00 00005		RNA recognition motif RRM -containing protein (AHRD V1 *-		1 CON
SL1.00sc00395	-2.26	*NG AT1G70200.1): contains Interpro domain(s) IPR000504	5	SGN-
_460.1.1	_,_ ~	RNA recognition motif. RNP-1	-	U563684
SL1 00sc07408		VCL1 VACUOLELESS 1 (AHRD V1 ***NG AT2G38020 1)		SGN-
530.1.1	-2,26	contains Interpro domain(s) IPR006926 Vns16 N-terminal	7	11574264
		cVP 72 A15 electron carrier/ hame binding / iron ion binding /		0374204
SI 1 00cc01252		monooyygenesel oyygen binding (AHDD V1 ***C	l	SCN
3L1.008C01232	-2,27	AT2C14600 1); containe Interme domain(c) IDD002401	10	SUIN-
_28.1.1		A 1 3G 14090.1); contains interpro domain(s) $IPR002401$	l	0578818
		Cytochrome P450, E-class, group I		
SL1.00sc04338		kelch repeat-containing F-box family protein (AHRD VI ***NG		SGN-
20.1.1	-2,27	AT3G63220.1); contains Interpro domain(s) IPR015915 Kelch-	9	U563001
		type beta propeller	. <u> </u>	0000001
SL1.00sc05575	2 27	F-box protein SKIP16 (AHRD V1 ***NG Q9LND7); contains	6	SGN-
_187.1.1	-2,27	Interpro domain(s) IPR007474 ApaG	0	U567358
		ATGSTU8 GLUTATHIONE S-TRANSFERASE TAU 8		
SL1.00sc06070		glutathione transferase (AHRD V1 *-*G AT3G09270.1); contains		SGN-
42.1.1	-2,3	Interpro domain(s) IPR004046 Glutathione S-transferase, C-	9	U580000
		terminal	l	
SI 1 00sc01457		Aspartic proteinase Asp1 (AHRD V1 ***NG O0III52): contains		SGN-
55 1 1	-2,31	Interpro domain(s) IPR001461 Pentidase A1	6	11583865
		Protein kingse G11A (AUDD V1 * *G R6SV10 MAIZE):		0303003
SL1.00sc03134	2 21	FIOLEIII KIIIdse OTTA (AHKD VI '- 'O DOSTIO_WAIZE),	10	SGN-
_25.1.1	-2,51	contains interpro domain(s) if Roo2290 Serine/direonine protein	10	U567695
GL 1 00 02406				CON
SL1.00sc03496	-2,31	18S pre-ribosomal assembly protein gar2-related (AHRD V1 *-	4	SGN-
7.1.1	<i>,</i>	*NG A12G03810.4)		0572758
SL1.00sc00082	-2.32	Aminoacylase-1 (AHRD V1 *-*G P37111); contains Interpro	11	SGN-
55.1.1	_,	domain(s) IPR010159 N-acyl-L-amino-acid amidohydrolase		U582789
SI 1.00sc00090		NBS-containing resistance-like protein (Fragment) (AHRD V1 *-	1	SGN-
234.1.1	-2,32	*NG A8BNC3_PLAAC); contains Interpro domain(s) IPR002182	2	11565272
_234.1.1		NB-ARC		0303212
		ALMT1 ALUMINUM-ACTIVATED MALATE	l	
SL1.00sc06004	2.22	TRANSPORTER 1 malate transmembrane transporter (AHRD	11	SL2.40ch
_198.1.1	-2,32	V1 *G AT1G08430.1); contains Interpro domain(s) IPR006214	11	11
_		Uncharacterised protein family UPF0005	1	
SL1.00sc07309		protein binding / tubulin-tyrosine ligase (AHRD V1 *-*NG	_	SGN-
6.1.1	-2,33	AT1G77550.1)	7	U596510
		Cytochrome P450 90C1 (AHRD V1 ***NG O9M066): contains	 I	
SL1.00sc00090	-2 36	Interpro domain(s) IPR002403 Cytochrome P450 E-class group	2	SGN-
_218.1.1	2,50	IV	-	U571023
		DUS1 DDODV7AMIDE UVDEDSENSITIVE 1 phosphoprotein		
SI 1 00cc04007		phosphotoso/ protoin tyrosing/soring/throoping phosphotoso	1	SCN
104 1 1	-2,36	(AUDD V1 * *C AT5C22720 1); contains Interme domain(c)	3	JU572490
_194.1.1		(ARKD VI O AI 5025/20.1), contains interpro domain(s)	1	0373469
GL 1 000(010		IPROI 5275 Actini-iraginin kinase, catalytic		CON
SL1.00sc06019	-2,37	Unknown Protein (AHRD V1)	6	SGN-
212.1.1	· ·			0584057
SL1.00sc05805		ER lumen protein retaining receptor family protein (AHRD V1	I .	SGN-
124.1.1	-2,39	***G AT3G25160.1); contains Interpro domain(s) IPR000133 ER	6	U578957
		lumen protein retaining receptor		0010701
SI 1 00cc03823		4-coumarate-coa ligase (AHRD V1 ***G B9I3N1_POPTR);	I	SGN
76.1.1	-2,4	contains Interpro domain(s) IPR000873 AMP-dependent	3	U562041
_/0.1.1		synthetase and ligase	l	0302941
SL1.00sc05575	2.4	Unknown Protein (AHRD V1); contains Interpro domain(s)	(SGN-
622.1.1	-2,4	IPR006514 Protein of unknown function DUF579. plant	6	U567295

SL1.00sc01435 _134.1.1	-2,41	Unknown Protein (AHRD V1); contains Interpro domain(s) IPR007612 Protein of unknown function DUF567	10	SGN- U573160
SL1.00sc03540 _106.1.1	-2,48	Chlorophyll a/b binding protein (AHRD V1 ***NG Q84TM7_TOBAC); contains Interpro domain(s) IPR001344 Chlorophyll A-B binding protein	12	SGN- U580120
SL1.00sc01220 _10.1.1	-2,49	FUNCTIONS IN molecular_function unknown INVOLVED IN biological_process unknown LOCATED IN cellular_component unknown (AHRD V1 *-*NG AT1G45248.5); contains Interpro domain(s) IPR018848 WIYLD domain	6	SGN- U597142
SL1.00sc04168 _86.1.1	-2,49	Unknown Protein (AHRD V1)	4	SGN- U597356
SL1.00sc02156 _16.1.1	-2,5	RING finger-like protein (AHRD V1 *-*NG Q8L775_ARATH); contains Interpro domain(s) IPR018957 Zinc finger, C3HC4 RING-type	8	SGN- U569718
SL1.00sc04121 _5.1.1	-2,51	ATP binding / microtubule motor (AHRD V1 ***NG AT5G06670.1); contains Interpro domain(s) IPR007520 Bul1, C- terminal	3	SGN- U570710
SL1.00sc04337 _520.1.1	-2,52	agenet domain-containing protein (AHRD V1 *-*NG AT4G32440.1); contains Interpro domain(s) IPR005491 ENT	5	SGN- U583236
SL1.00sc05992 _152.1.1	-2,53	Unknown Protein (AHRD V1)	10	SGN- U568229
SL1.00sc07184 _563.1.1	-2,54	NADH-ubiquinone oxidoreductase-related (AHRD V1 ***NG AT3G62790.1)	11	SGN- U565626
SL1.00sc04444 _174.1.1	-2,55	Unknown Protein (AHRD V1)	1	SGN- U573623
SL1.00sc05603 _77.1.1	-2,55	Glycolate oxidase (AHRD V1 ***G P93260_MESCR); contains Interpro domain(s) IPR017934 FMN-dependent alpha-hydroxy acid dehydrogenase	10	SGN- U579320
SL1.00sc00463 _182.1.1	-2,58	Dual specificity protein phosphatase 4 (AHRD V1 *-*NG Q9PW71); contains Interpro domain(s) IPR020422 Dual specificity phosphatase, subgroup, catalytic domain	5	SGN- U584218
SL1.00sc00082 _57.1.1	-2,6	FUNCTIONS IN molecular_function unknown INVOLVED IN biological_process unknown LOCATED IN chloroplast EXPRESSED IN 22 plant structures EXPRESSED DURING 13 growth stages (AHRD V1 ***NG AT4G08280.1); contains Interpro domain(s) IPR008554 Glutaredoxin 2	11	SGN- U568656
SL1.00sc07059 282.1.1	-2,6	Acyltransferase-like protein (AHRD V1 **-G Q589X7_TOBAC); contains Interpro domain(s) IPR003480 Transferase	7	SGN- U563857
SL1.00sc00395 _186.1.1	-2,61	serine/threonine protein kinase family protein (AHRD V1 ***G AT1G66880.1); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	5	SGN- U601604
SL1.00sc04168 _199.1.1	-2,61	Transcriptional regulator ATRX (AHRD V1 *-*NG Q61687); contains Interpro domain(s) IPR001650 DNA/RNA helicase, C- terminal	4	SL2.40ch 04
SL1.00sc00777 _407.1.1	-2,62	thylakoid lumenal protein-related (AHRD V1 ***NG AT1G12250.2); contains Interpro domain(s) IPR001646 Pentapeptide repeat	8	SGN- U563637
SL1.00sc00226 _692.1.1	-2,63	tRNA-splicing endonuclease positive effector-related (AHRD V1 *NG AT4G05540.1)	2	SL2.40ch 02
SL1.00sc07059 _91.1.1	-2,64	Receptor-like protein kinase 2 (AHRD V1 ***NG Q9LHP4); contains Interpro domain(s) IPR013210 Leucine-rich repeat, N- terminal	7	SGN- U562726
SL1.00sc03946 _4.1.1	-2,7	Replication protein A 32 kDa subunit (AHRD V1 ***NG Q63528); contains Interpro domain(s) IPR014646 Replication protein A, subunit RPA32	7	SGN- U584172
SL1.00sc04765 _228.1.1	-2,72	myb family transcription factor (AHRD V1 *-*G AT2G01060.1); contains Interpro domain(s) IPR006447 Myb-like DNA-binding region, SHAQKYF class	11	SGN- U576103
SL1.00sc00395	-2,76	Repressor of RNA polymerase III transcription MAF1 homolog	5	SGN-

_240.1.1		(AHRD V1 ***NG Q5XIH0); contains Interpro domain(s)		U572275
		IPR01525 / Maf1 regulator		
SL1 00sc07059		Protein MAK10 homolog (AHRD V1 ***NG Q5ZHV2); contains		SGN-
175.1.1	-2,77	Interpro domain(s) IPR007244 Mak10 subunit, NatC N(alpha)-	7	11566048
_175.1.1		terminal acetyltransferase		0500010
SI 1 00cc03187		nucleic acid binding / oxidoreductase (AHRD V1 *G		SGN
51 1 1	-2,78	AT3G01210.1); contains Interpro domain(s) IPR001395	2	50IN-
_31.1.1		Aldo/keto reductase		0574158
		PP2CA ARABIDOPSIS THALIANA PROTEIN		
SL1.00sc04889		PHOSPHATASE 2CA protein binding / protein serine/threonine		SGN-
124.1.1	-2,82	phosphatase (AHRD V1 ***G AT3G11410 1): contains Interpro	3	U565103
_12		domain(s) IPR015655 Protein phosphatase 2C		0505105
		OTU like cysteine protesse family protein (AHPD V1 ***C		
SL1.00sc04687	2 07	AT2C22260 1); contains Internet domain(a) IDD002222 Overion	7	SGN-
_88.1.1	-2,87	AT 5022200.1); contains Interpro domain(s) IPR005525 Ovarian	/	U564973
SL1.00sc02102	• • • •	MADS-box transcription factor 18 (AHRD V1 ***G		SGN-
550.1.1	-2,89	Q0D4T4); contains Interpro domain(s) IPR002100	12	U591388
		Transcription factor, MADS-box		0072000
SL1.00sc05290	-2,91	lipase class 3 family protein (AHRD V1 ***NG AT3G07400.1)	9	SGN- 11586493
		RCD1 RADICAL_INDUCED CELL DEATH1 protein binding		0300173
SL1.00sc02597	2 03	(AHPD V1 * *G AT1G32230 1): contains Interpro domain(s)	6	SGN-
_118.1.1	-2,95	(AIRD VI - O AITO32250.1), contains interpro domain(s) IPP004170 WWE domain	0	U563168
		AtUCT25 A2 UDD alwaysh transformed 25 A2 UDD		
		AluG185A2 UDP-glucosyl transferase 85A2 UDP-		
SL1.00sc03462	• • • •	glycosyltransferase/ glucuronosyltransferase/ transferase		SGN-
16.1.1	-2,96	transferring glycosyl groups (AHRD V1 ***G AT1G22360.1);	3	U578371
		contains Interpro domain(s) IPR002213 UDP-glucuronosyl/UDP-		
		glucosyltransferase		
SI 1 00sc03587		Kinase-like protein (Fragment) (AHRD V1 *-*G		SGN-
82 1 1	-2,98	C7A7P3_CORAV); contains Interpro domain(s) IPR002290	3	11500867
_02.1.1		Serine/threonine protein kinase		0399807
		SRF3 STRUBBELIG-RECEPTOR FAMILY 3 ATP binding /		
SL1.00sc05390	2.00	kinase/ protein serine/threonine kinase (AHRD V1 *-*G	7	SGN-
250.1.1	-2,98	AT4G03390.1); contains Interpro domain(s) IPR002290	/	U597133
—		Serine/threonine protein kinase		
		DNA-directed RNA polymerases I. II. and III subunit RPABC1		
SL1.00sc04337	-3.08	(AHRD V1 ***G B0BNF2): contains Interpro domain(s)	5	SGN-
_175.1.1	5,00	IPR014381 DNA-directed RNA polymerase RPB5 subunit	5	U591090
		nhov PV domain containing protein (AHPD V1 * *NG		
SL1.00sc04007	3 00	AT1G15240.2): contains Interpro domain(s) IDD001682 Dhoy	3	SGN-
_439.1.1	-5,09	ATTOT5240.2), contains interpro domain(s) if R001005 Thox-	5	U570765
SI 1 00cc02506		IIKC Vof2 (AUDD V1 ***NC AGVA57 OMACN): contains Internet		SI 2 40ab
SL1.00sc02596	-3,11	Y CI2 (AHRD VI ****NG A0 Y A57_9MAGN); contains interpro	11	SL2.40Ch
8.1.1		domain(s) IPR008543 Chioroplast Y ct2		11
SL1.00sc05858		protein-protein interaction regulator family protein (AHRD VI		SGN-
1062.1.1	-3,15	***NG AT1G15200.1); contains Interpro domain(s) IPR006786	1	U584487
		Pinin/SDK/memA protein		000.107
SI 1 00sc00463		Pto-like serine/threonine kinase (AHRD V1 ***G		SGN-
127 1 1	-3,18	Q6W0D1_CAPCH); contains Interpro domain(s) IPR017442	5	11577004
_137.1.1		Serine/threonine protein kinase-related		0377094
SL1.00sc00463	2 10	Nucleoporin GLE1 (AHRD V1 *-*NG Q6DRB1); contains	5	SGN-
_186.1.1	-3,18	Interpro domain(s) IPR012476 GLE1-like	3	U573403
01.1.00		DNA-binding family protein (AHRD V1 ***G AT4G12080.1):		0.011
SL1.00sc00777	-3.2	contains Interpro domain(s) IPR005175 Protein of unknown	8	SGN-
_361.1.1	- ,=	function DUF296		U574372
SL1.00sc02102		chitinase (AHRD V1 *G AT3G16920 1); contains Interpro		SGN-
154 1 1	-3,24	domain(s) IPR/000726 Glycoside hydrolase family 10 catalytic	12	11568267
<u></u>	<u> </u>	Condensin complex subunit 3 (AHRD V1 * *NC OOVUP5).		SGN
150 1 1	-3,32	contains Interpro domain(s) IPR016024 Armadillo_type fold	11	U603716

Unknown Protein (AHRD V1); contains Interpro domain(s)

10

SGN-

SL1.00sc01435

-3,41

_146.1.1		IPR007493 Protein of unknown function DUF538		U575312
SL1.00sc03187 _295.1.1	-3,44	WPP domain-associated protein (Fragment) (AHRD V1 ***NG Q5BQN5)	2	SGN- U574019
SL1.00sc02494 _16.1.1	-3,57	Phosphoribosyltransferase (Fragment) (AHRD V1 *NG Q8LSY8_TAXDI); contains Interpro domain(s) IPR013583 Phosphoribosyltransferase C-terminal, plant	11	SGN- U563885
SL1.00sc02302 440.1.1	-3,61	emb2410 embryo defective 2410 (AHRD V1 *-*NG AT2G25660.1)	8	SGN- U577507
SL1.00sc04338 _108.1.1	-3,63	Ycf2 (AHRD V1 ***NG A6Y9W3_9MAGN); contains Interpro domain(s) IPR008543 Chloroplast Ycf2	9	SGN- U566374
SL1.00sc00395 _247.1.1	-3,68	Xylosyltransferase 1 (AHRD V1 *-*NG Q5QQ56); contains Interpro domain(s) IPR003406 Glycosyl transferase, family 14	5	SGN- U601817
SL1.00sc03187 _397.1.1	-3,68	Chlorophyll a/b binding protein (AHRD V1 ***G Q41425_SOLTU); contains Interpro domain(s) IPR001344 Chlorophyll A-B binding protein	2	SGN- U579405
SL1.00sc04889 _28.1.1	-3,68	nodulin MtN3 family protein (AHRD V1 ***NG AT3G48740.1); contains Interpro domain(s) IPR018179 RAG1-activating protein 1 homologue	3	SGN- U580747
SL1.00sc04337 _213.1.1	-3,79	GCN5-related N-acetyltransferase GNAT family protein (AHRD V1 ***G AT4G19985.1)	5	SGN- U584854
SL1.00sc04444 _242.1.1	-3,8	Thylakoid lumenal 19 kDa protein, chloroplastic (AHRD V1 *- *NG P82658); contains Interpro domain(s) IPR016123 Mog1/PsbP, alpha/beta/alpha sandwich	1	SGN- U565900
SL1.00sc04788 _168.1.1	-4,06	Heat stress transcription factor B-3 (AHRD V1 ***G O22230); contains Interpro domain(s) IPR000232 Heat shock factor (HSF)- type, DNA-binding	4	SGN- U568323
SL1.00sc02749 _258.1.1	-4,2	galactosyltransferase family protein (AHRD V1 *-*NG AT5G62620.1); contains Interpro domain(s) IPR002659 Glycosyl transferase, family 31	3	SGN- U570495
SL1.00sc01435 _33.1.1	-4,31	Protein notum homolog (AHRD V1 **-NG Q6P988); contains Interpro domain(s) IPR004963 Pectinacetylesterase	10	SGN- U603038
SL1.00sc04604 _4.1.1	-4,71	cYP-81-D1 CYTOCHROME P450 81D1 electron carrier/ heme binding / iron ion binding / monooxygenase/ oxygen binding (AHRD V1 ***G AT5G36220.1); contains Interpro domain(s) IPR002401 Cytochrome P450, E-class, group I	2	SGN- U575858
SL1.00sc02895 _161.1.1	-4,76	integral membrane HRF1 family protein (AHRD V1 **-NG AT1G30890.2); contains Interpro domain(s) IPR005578 Hrf1	9	SGN- U597555
SL1.00sc05189 _116.1.1	-4,81	Unknown Protein (AHRD V1)	1	SGN- U587147
SL1.00sc02618 _43.1.1	-4,83	GRAM domain-containing protein / ABA-responsive protein- related (AHRD V1 **-NG AT5G13200.1); contains Interpro domain(s) IPR004182 GRAM	1	SGN- U569382
SL1.00sc06741 _21.1.1	-5,01	Adenylyl-sulfate reductase (AHRD V1 ***G Q672Q8_SOLLC); contains Interpro domain(s) IPR004508 Thioredoxin-independent 5'-adenylylsulphate reductase	3	SGN- U578339
SL1.00sc01435 _270.1.1	-5,43	Phosphoadenosine phosphosulfate reductase (AHRD V1 *-*NG B0U6V9); contains Interpro domain(s) IPR002500 Phosphoadenosine phosphosulphate reductase	10	SGN- U565112
SL1.00sc05390 _279.1.1	-5,45	Diacylglycerol kinase (AHRD V1 ***G Q9FVD1_SOLLC); contains Interpro domain(s) IPR016961 Diacylglycerol kinase, plant	7	SGN- U585113
SL1.00sc00633 60.1.1	-8,36	ABC transporter G family member 28 (AHRD V1 ***NG Q9FF46); contains Interpro domain(s) IPR003439 ABC transporter-like	4	SGN- U601002
SL1.00sc01435 _297.1.1	-10,18	cYP-71-B20 electron carrier/ heme binding / iron ion binding / monooxygenase/ oxygen binding (AHRD V1 ***G AT3G26180.2); contains Interpro domain(s) IPR002401 Cytochrome P450, E-class, group I	10	SGN- U580161
SL1.00sc05858	-15,79	Unknown Protein (AHRD V1)	1	SGN-
_14.1.1				U584272
---------------------------	--------	---	---	-----------------
SL1.00sc00777 _408.1.1	-17,52	YABBY like transcription factor (Fragment) (AHRD V1 *G A6P339_GNEPA); contains Interpro domain(s) IPR006780 YABBY protein	8	SGN- U597627
SL1.00sc04889 _200.1.1	-18,12	Alpha-amylase (AHRD V1 ***G Q8LP27_IPONI); contains Interpro domain(s) IPR013775 Alpha-amylase, plant	3	SGN- U585613
SL1.00sc03946 _83.1.1	+	Unknown Protein (AHRD V1)	7	SGN- U596353

Figura 13 - Box plot mostrando o total de *reads* obtidos pelo sequenciamento na plataforma SOLID de 5 diferentes genes selecionados na Tabela 4 e um gene (*GRAS 10*) selecionado na Tabela 3.

Entre os 361 genes da lista também estão alguns genes do cromossomo 3, porém nenhum deles está localizado entre as mutações *wf* e *r*, não sendo portanto, o gene *RG1*, e por isso, também não foram selecionados para a análise por qRT-PCR, na qual preferimos selecionar genes de outros cromossomos que provavelmente são regulados por *RG1*. Dentre

os 5 genes selecionados estão *Serine/threonine protein phosphatase 7 long form homolog* e *YABBY like transcription factor*, os quais encontram-se nas extremidades da lista e são ativados e reprimidos, respectivamente, em MT-*Rg1*.

Os genes *YAB* codificam fatores de transcrição definidos pela presença dos domínios *YAB* e *zinc finger* (BOWMAN; SMYTH, 1999; BOWMAN, 2000), sendo reconhecidas 5 subfamílias: CRABS CLAW (CRC), FILAMENTOUS FLOWER (FIL)/YABBY3 (YAB3), INNER NO OUTER (INO), YABBY2 (YAB2) e YABBY5 (YAB5) (BOWMAN, 2000; LEE et al., 2005; YAMADA et al., 2004). Dentre as subfamílias, FIL, YAB2, YAB3 e YAB5 atuam na ativação dos processos de formação laminar, reprimindo o meristema apical (SAM) e formando o domínio marginal das folhas (SAROJAM et al., 2010). Os genes de CRC são transcritos nos tecidos abaxiais do carpelo bem como na placenta e nos nectários das Eudicotiledôneas (BOWMAN; SMYTH, 1999;. LEE et al, 2005;. ORASHAKOVA et al, 2009), não sendo detectada a sua expressão nos órgãos vegetativos (YAMADA et al., 2011). A análise do gene *Yabby like*, regulado negativamente em *Rg1*, através da nova anotação do Sol Genomics Network (ITAG 2.3), sugere que este gene é similar a CRC e, portanto possui função similar a de outro *Yabby-like* encontrado em tomateiro, conhecido como o mutante *fasciated* (CONG; BARRERO; TANKSLEY, 2008).

Outro gene de uma família relacionada ao desenvolvimento floral com expressão reprimida em Rg1 foi o MADS-box 18. Os membros da família MADS-box são conhecidos por estarem envolvidos predominantemente em processos do desenvolvimento vegetal, sendo os melhores estudos relacionados com a determinação da identidade dos verticilos florais, pois através deles foi formulado o modelo genético ABC, que explica como as funções combinadas de três classes de genes (A, B, e C) podem determinar a identidade de sépalas, pétalas, estames e pistilo (revisto por COEN; MEYEROWITZ, 1991). Uma análise filogenética foi realizada por Alvarez-Buylla et al. (2000), que incluiu 44 sequências do domínio MADS de Arabidopsis e vários outros domínios MADSbox MYOCYTE ENHANCER FACTOR2-like (MEF2) e SERUM RESPONSE FACTOR-like (SRF) a partir de sequências de fungos e animais. A análise sugere que existem duas linhagens principais de genes MADSbox: tipo I e tipo II, sendo que as proteínas MADS-box do tipo MIKC e MEF2 formam a linhagem de tipo II. Entre os genes do tipo II, está AGAMOUS (YANOFSKY et al., 1990), gene relacionado a organogênese floral. Em estudos feitos por Lehti-Shiu, Adamczyk e Fernandez (2005), foram selecionados 8 genes MADS-box que apresentaram expressão elevada durante a fase embrionária, sendo 4 destes (FLOWERING LOCUS C, FLOWERING LOCUS M, AGAMOUS-LIKE 15, e AGAMOUS-LIKE 18) utilizados para a análise do padrão

de expressão espacial em sementes. Todos os quatro foram expressos em células de todo o endosperma e embrião, porém ao analisar plantas transgênicas de *AGAMOUS-LIKE15* (*AGL15*) e *AGAMOUS-LIKE18* (*AGL18*) não foram encontrados embriões defectivos.

Também foi selecionado um gene relacionado a embriogêneses - *embryo defective* 2410. A embriogênese em dicotiledóneas consiste em várias etapas caracterizadas por importantes eventos do desenvolvimento (MEINKE, 1991a; GOLDBERG; BARKER; PEREZ-GRAU, 1989; WEST; HARADA, 1993). Os mutantes *emb-defective (EMB)* constituem o maior grupo de mutantes identificados em *Arabidopsis* (MEINKE, 1994). Estudos demonstraram que os mutantes *emb* são divididos em categorias baseadas na morfologia do embrião na maturidade (MEINKE, 1994; MEINKE, 1991b). A maioria dos mutantes *emb* torna-se defeituoso no início da embriogênese e são incapazes de sobreviver à dessecação de sementes (MEINKE, 1994), porém também são conhecidos mutantes *emb* que tornam-se defeituosos tardiamente, falhando em completar o crescimento e morfogênese durante as fases finais do desenvolvimento da semente (VERNON; MEINKE, 1995).

O gene *wound-responsive protein* também despertou nosso interesse a respeito dos mecanismos de resposta a estresse de MT e *Rg1*. Existe um grande interesse no estudo dos diferentes mecanismos de defesa vegetal, tanto relacionados a hormônios e outras substancias químicas, quanto a genes envolvidos neste processo. Genes de resposta a injúria (wound-responsive genes) também têm sido relatados, incluindo genes para o reforço da parede celular, fenilalanina amônia liase (PAL) e chitinase (CHS) para a síntese de fenilpropanóides, ACC sintase e ACC oxidase para a síntese de etileno e inibidores de protease (PI) contra a alimentação de insetos (CORBIN; SAUER; LAMB, 1987; GREEN; RYAN, 1972; KENDE, 1993). Também tem sido encontrado genes que são acionados apenas para os mecanismos de defesa, como o gene *KED*, encontrado em tabaco (HARA et al., 2000). Este gene foi expresso apenas após a lesão das folhas de tabaco, tendo uma resposta rápida que pode ser repetida diversas vezes, a qual é desencadeada por alterações físicas no ambiente celular.

A grande diferença no padrão de expressão da Serine/threonine protein phosphatase 7 (PP7) foi o que mais nos chamou a atenção nos dados do SOLiD devido a importância da fosforilação em diversas vias de sinalização. Fosforilação e desfosforilação de proteínas catalisadas por proteínas quinases e proteínas fosfatases muitas vezes servem como interruptores "on-e-off" na regulação de muitas atividades celulares (LUAN, 2003). Embora os mecanismos das proteinas quinases tenham sido mais amplamente estudados, alguns estudos sobre as funções de proteínas fosfatases também têm sido realizados, demonstrando claramente que proteínas fosfatases podem funcionar não apenas contrabalançando as

proteínas quinases, mas também podem assumir um importante papel em muitos eventos de sinalização (LUAN, 1998). Com base no grau de semelhança estrutural dos seus domínios catalíticos, as fosfatases eucarióticas são subdivididas em cinco subtipos principais: PP1; PP2A (incluindo PP4 e PP6); PP2B (incluindo PP3); PP5 e PPEF/PP7. As quatro primeiras subfamílias têm sido extensivamente investigadas, em contraste com a subfamília PPEF/PP7 que permanece inexplorada. Dentre as funções já conhecidas relacionadas a PP7 estão a sinalização sensorial (ANDREEVA; KUTUZOV, 1999; ANDREEVA; KUTUZOV, 2001; KUTUZOV; BENNETT; ANDREEVA, 2001) e processos variados tais como: i) alta expressão de PP7 em subconjunto de estômatos (ANDREEVA; KUTUZOV, 1999), ii) atuação de PP7 como um regulador positivo na sinalização de receptores de luz azul e controle da amplificação da sinalização do fitocromo (MOLLER et al., 2003), iii) participação de PP7 em mecanismos de resposta a estresse, como a termorregulação relacionada a fatores de transcrição HSF (LIU et al., 2007) e iv) possível envolvimento de PP7 nos mecanismos de sinalização dependentes do ácido salicílico (SNYMAN et al., 2008).

4.6 Análise dos Genes Diferencialmente Expressos por qRT-PCR

Para a validação por qRT-PCR, foram utilizados alguns tratamentos para discriminar melhor as diferenças na capacidade de regeneração in vitro entre MT e MT-Rg1. Dentre estes tratamentos, também está aquele utilizado no RNA-seq, podendo-se assim, comparar os resultados obtidos pelas duas técnicas. Isso permitiu verificar se a diferença de expressão dos genes selecionados era devido a maior capacidade de regeneração de MT-Rg1, ou devido alguma outra variação obtida apenas naquele determinado tratamento. Inicialmente foram feitos iniciadores para os genes selecionados com as sequências disponíveis no Sol Genomics Network através da **OligoPerfect**TM Designer, disponível ferramenta em http://tools.invitrogen.com/content.cfm?pageid=9716. Posteriormente, a eficiência dos iniciadores foi analisada pelo NetPrimer. disponível em http://www.premierbiosoft.com/netprimer/. Como genes referência foram utilizados 2 genes de expressão constitutiva (Tubulina e Ubiquitina), que juntamente com os iniciadores dos genes validados, encontram-se descritos na Tabela 5.

Tabela 5 - Iniciadores desenhados para 5 diferentes genes selecionados na Tabela 4, um gene (*GRAS 10*) selecionado na Tabela 3 e 2 genes de expressão constitutiva utilizados como genes de referência, apontados junto as suas respectivas sequências, tamanho de amplicon, valores de eficiência e R^2 , sendo os dois últimos obtidos através de curva de eficiência por amplificação quantitativa de transcritos reversos (RT-qPCR).

Gene	Sequência	Tamanho do amplicon (pb)	Eficiência	R ²	Uso
Tubulina	AACCTCCATTCAGGAGATGTTT TCTGCTGTAGCATCCTGGTATT	180	0,9688	0,96535	Referência
Ubiquitina	GGACGGACGTACTCTAGCTGAT AGCTTTCGACCTCAAGGGTA	134	0,85163	0,96536	Referência
GRAS 10	AACAACGAGTGGTCGGAGAC TTGGTTCTGAGAGGGGGCTAA	53	0,98754	0,96338	Mapeamento
Serine/ threonine	GTAGATTTGGGCATGGGAAA TAGAGGCTTTTGGCAATGGT	56	0,98526	0,95553	SOLID
Yabby	CCCACTTTCCACACATTCAA CTGCTGACGCACATTAGTCC	71	0,97925	0,97129	SOLID
emb2410	TGCCCATTTATCAGAAACCA GCATTGCCATCTCAGAATCC	88	0,9592	0,96311	SOLID
MADS- box	GGGAACCGTCATCAGAAATG TGGCTTAGGCAATCCTCACT	115	0,91474	0,94891	SOLID
wound- responsive	TCTCCTCTTCTGTCGCTTCC CTCTTCTCCTCGCCTTTTCC	112	0,99111	0,97421	SOLID

Os diferentes tratamentos tiveram o RNA de suas amostras extraídos. Conferida a qualidade após o tratamento com DNAse e precipitação das amostras para retirar resíduos da resina da TURBO DNA-freeTM, foi mensurada a quantidade de RNA extraído das amostras e realizada a síntese de cDNA. Para testar a eficiência da síntese, as amostras foram diluídas a 1:10 (v/v) e submetidas a uma reação de RT-PCR utilizando-se o iniciador do gene tubulina. Em seguida, utilizando-se o DNA de folhas de MT, diluições seriais a 1:10, 1:100 e 1:1000 (v/v) foram realizadas com o objetivo de estabelecer uma curva de eficiência para cada amplificador específico dos diversos genes. Os valores de eficiência obtidos variaram de 0,85 (ubiquitina) a 0,99 (wound-responsive) e os valores de correlação R² foram acima de 0,94 (Tabela 5).

Segundo Vandersompele et al. (2002), para medir a expressão gênica com acurácia, devem-se usar múltiplos genes referência. Alguns modelos matemáticos foram desenvolvidos para o cálculo da expressão relativa, os quais podem ou não usar a correção da eficiência (KENNETH; THOMAS, 2001; PFAFFL, 2001; SOONG; RUSCHOFF; TABITI, 2000). Como optou-se previamente pelo uso de dois genes constitutivos (tubulina e ubiquitina) para a normalização da expressão dos genes de interesse, o programa REST 2009 foi adotado (PFAFFL, 2001; PFAFFL; HAGELEIT, 2002; VANDESOMPELE et. al. 2002). Os dados de expressão gênica foram então calculados por quantificação relativa, a qual necessita além do

gene referência, uma amostra como referência, ou seja, como tratamento controle ou calibrador para a determinação da expressão (PFAFFL, 2001). Para isso, como controle interno da expressão foi estabelecido o Ct obtido em MT, sendo todos os dados finais de expressão obtidos calculados a partir da expressão relativa de *Rg1* quando comparado a MT.

Inicialmente foram comparados os dados de expressão obtidos por qRT-PCR no tratamento 1 dia em ANA com aqueles obtidos no sequenciamento pelo SOLiD. Apenas dois genes apresentaram diferenças quando comparadas as duas metodologias. Por causa desta diferença, foram retirados da analise os dados referente ao gene *Yabby-like*, pois o iniciador pode não ser específico ao gene. Este fato foi comprovado pela diferença de expressão observada quando o iniciador desenhado foi testado no mutante *fasciated* (dados não mostrados). Análises *in silico* feitas com o iniciador de *GRAS 10* mostraram que ele é específico ao gene. Por isso, a diferença entre os dados de expressão das duas técnicas foi relacionada a diferenças na sensibilidade e conservação dos transcritos extraídos.

Analisando os tratamentos chaves selecionados para qRT-PCR, pretendia-se encontrar genes cuja expressão fosse maior em Rg1 do que em MT em cotilédones 12 dias de idade recém isolados e incubados por 1 dia em ANA. Isso poderia sugerir que há a forte ligação destes com o processo de aquisição de competência, já que resultados anteriores mostram que nesse período Rg1 é competente para induzir caules em SIM ou raízes em RIM, mas MT não (LOMBRADI, 2008). O gene *Wound-responsive* mostrou ser mais expresso em Rg1 após 1 dia em ANA (Figura 14.A) e em cotilédones com 8 dias (Figura 14.B), o que provavelmente está relacionado com a fragilidade dos explantes cotiledonares aos 8 dias e as recentes injúrias do processo de obtenção dos explantes em 1 dia em ANA. O gene *Emb2410 defective* mostrou expressão elevada apenas após 5 dias em BAP (Figura 14.C.), tratamento relacionado ao processo de indução de gemas caulinares, o que leva a crer que este gene pode futuramente ser utilizado como um marcador deste processo. De acordo com os resultados obtidos para o gene *MADS-box 18*, não foi possível estabelecer nenhum tipo de correlação com os processos relacionados ao cultivo *in vitro* dos explantes, pois este apresentou expressão maior em Rg1 apenas em cotilédones com 10 dias (Figura 14.B).

Por outro lado, o gene *GRAS 10* mostrou forte relação com o processo de aquisição de competência, pois sua expressão em Rg1 foi significativamente maior do que em MT apenas no tratamento relacionado a essa fase, ou seja, em ANA (Figura 14.A). Isso corrobora com os dados obtidos por Lombardi (2008), os quais sugerem uma forte ligação da superfamília GRAS com Rg1. E novamente o gene *Serine/threonine protein phosphatase 7* apresentou resultados mais significativos para o nosso trabalho, pois sua expressão em Rg1 é muito maior

em cotilédones com 12 dias (Figura 14.B.) e no tratamento 1 dia ANA (Figura 14.A.), apresentando uma forte interação deste gene com o processo de aquisição de competência, já que ambos tratamentos coincidem com condições em que Rg1 é competente mas, MT não. Porém, como as fosfatases estão envolvidas em diversos processos do desenvolvimento vegetal, esta grande diferença de expressão indica que muitas proteínas precisam ser ativadas ou reprimidas durante o processo de aquisição de competência, posicionando este gene de forma intermediaria na cascata de reações necessárias para as modificações celulares que ocorrem nos explantes utilizados durante o cultivo *in vitro*.

Figura 14 – Expressão relativa de MT-*Rg1* para os genes *GRAS 10*, *Serine/threonine protein phosphatase 7*, *MADS-box 18*, *Emb2410 defective* e *Wound-responsive* em 5 diferentes tratamentos. **A.** Expressão relativa em cotilédones com 8, 10 e 12 dias. **B.** Expressão relativa em explantes de cotilédones de 8 dias que permaneceram 1 dia em meio com ANA (meio RIM). **C.** Expressão relativa em explantes de cotilédones de 8 dias que permaneceram 5 dias em meio com BAP (meio SIM). **A-C.** A normalização da expressão dos genes de interesse e os dados de expressão relativa foram feitos através do programa REST 2009.

4.7 Análise filogenética da família de fatores de transcrição GRAS

Como a superfamília GRAS possui diversos membros, sendo muitos deles bem conhecidos em Arabidopsis, foram feitas analises filogenéticas com o intuito de identificar um homólogo para GRAS 10 em Arabidopsis, para desta forma, encontrar funções deste gene relacionadas ao processo de regeneração in vitro. Para a construção de uma árvore filogenética, as sequências de nucleotídeos dos genes de tomateiro encontradas no SGN foram comparadas com as sequências disponíveis no banco de dados publico NCBI (National Center for Biotechnology Information www.ncbi.nlm.nih.gov/). A busca foi feita através da ferramenta BLAST (Basic Local Alignment Search Tool) (ALTSCHUL et al., 1990), sendo selecionadas sequências de Arabidopsis thaliana e Oryza sativa (Tabela 6). Todas as sequencias obtidas foram traduzidas com 0 programa Expasy (http://web.expasy.org/translate/) e as sequências de aminoácidos obtidas das 3 espécies, foi feita a busca pelos domínios conservados relacionados a função de interesse, analisando estas sequências na ferramenta Conserved Domain Search Service (CD-Search http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Sabendo-se o inicio e o final dos domínios conservados de cada um dos genes, foi feito o alinhamento destes domínios com a ferramenta ClustalW do programa MEGA 5.0 (TAMURA et al., 2011) utilizando-se os parâmetros padrões (default) (Figura 15). As árvores foram construídas utilizando-se o programa MEGA 5.0, com o modelo de comparação Neighbor-joining (SAITOU; NEI, 1987), método de distância p e supressão pair-wise. A robustez dos ramos gerados pela árvore foi medida pelo teste probabilístico bootstrap (SITNIKOVA; RZHETSKY; NEI, 1995), originado a partir de 1000 repetições (Figura 16).

Com base na análise filogenética foi possível identificar o gene *GRAS 10* como homológo ao gene *SCL8* já identificado em *Arabidopsis*. Embora muitos estudados sejam feitos sobre esta família de fatores de transcrição, relacionado-a com diversos papéis em processos fundamentais do desenvolvimento das plantas (revisto por SUN et al., 2012), pouco se sabe a respeito de *GRAS10* de tomateiro e *SCL8* de *Arabidopsis*, sendo relatados apenas dados que mostram que o primeiro não está diretamente envolvido com a resistência a doenças em plantas (MAYROSE et al., 2006) e que o segundo apresenta maior expressão em tecidos radiculares (PYSH et al., 1999). Porém, sabe-se que a subfamília HAM tem um importante papel na manutenção do meristema caulinar e na indeterminação celular, o que sugere que provavelmente a família de fatores de transcrição GRAS pode atuar de forma positiva na organogênese *in vitro*. Desse modo, os resultados apresentados no presente estudo

contribuem para uma melhor caracterização de um dos membros na família GRAS em tomateiro, atribuindo um possível papel na competência organogênica, sendo relacionado com Rg1.

Designação	Gene	Número de acesso	Banco de dados	Espécie	
GRAS 10	GRAS 10	Solyc03g025170.1.1	SGN	Solanum lycopersicum	
GRAS 9	GRAS 9	gb DQ399830.1	NCBI	Solanum lycopersicum	
PAT1	scarecrow-like transcription factor PAT1	NM_203174.2	NCBI	Arabidopsis thaliana	
SCL8	scarecrow-like protein 8	NM_124630.4	NCBI	Arabidopsis thaliana	
Os02g0681900	Os02g0681900	NM_001054283.1	NCBI	Oryza sativa	
GAI, <i>procera</i>	GAI-like protein	Solyc11g011260.1.1	SGN	Solanum lycopersicum	
RGA1	DELLA protein RGA	NM_126218.2	NCBI	Arabidopsis thaliana	
OsGAI	OsGAI	NM_001057567.1	NCBI	Oryza sativa	
<i>lateral</i> <i>suppressor</i> (Ls)	lateral suppressor protein (Ls)	Solyc07g066250.1.1	SGN	Solanum lycopersicum	
SCL18 (LAS)	scarecrow-like protein 18 (LAS)	NM_104434.3	NCBI	Arabidopsis thaliana	
RGL2	DELLA protein RGL2	NM_111216.2	NCBI	Arabidopsis thaliana	
GRAS 7	GRAS 7	Solyc07g065270.1	SGN	Solanum lycopersicum	
GRAS 6	GRAS 6	Solyc04g064550	SGN	Solanum lycopersicum	
GRAS 4	GRAS 4	Solyc01g100200.2.1	SGN	Solanum lycopersicum	
GRAS 2	GRAS 2	Solyc07g063940.1.	SGN	Solanum lycopersicum	
GRAS 16	GRAS 16	Solyc03g123400.1.1	SGN	Solanum lycopersicum	
GRAS 1	GRAS 1	Solyc11g012510.1.1.	SGN	Solanum lycopersicum	
SCL5	scarecrow-like protein 5	NM_103942.2	NCBI	Arabidopsis thaliana	
SCL1	scarecrow-like protein 1	NM_101996.3	NCBI	Arabidopsis thaliana	
Os01g0881500	Os01g0881500	NM_001051535.1	NCBI	Oryza sativa	
SCL14	scarecrow-like protein 14	NM_100627.4	NCBI	Arabidopsis thaliana	
SCL34	scarecrow-like protein 34	NM_128463.4	NCBI	Arabidopsis thaliana	

Tabela 6 - Número de acesso e banco de dados de origem das seqüências do domínio conservado GRAS de *Solanum lycopersicum, Arabidopsis thaliana* e *Oryza sativa* utilizadas para a árvore filogenética da Superfamília GRAS.

SCL11	scarecrow-like protein 11	NM_125336.2	NCBI	Arabidopsis thaliana
SCL9	scarecrow-like protein 9	NM_129321.2	NCBI	Arabidopsis thaliana
Os04g0590400	Os04g0590400	NM_001060241.1	NCBI	Oryza sativa
Os03g0690600	Os03g0690600	NM_001057487.1	NCBI	Oryza sativa
CIGR1	chitin-inducible gibberellin- responsive protein	AY062209.1	NCBI	Oryza sativa
SCL30	scarecrow-like protein 30	NM_001084782.1	NCBI	Arabidopsis thaliana
SCL29	scarecrow-like protein 29	NM_112237.1	NCBI	Arabidopsis thaliana
SCL13	scarecrow-like protein 13	NM_117828.7	NCBI	Arabidopsis thaliana
SCL21	scarecrow-like protein 21	NM_126521.3	NCBI	Arabidopsis thaliana
GAI	DELLA protein GAI	NM_101361.2	NCBI	Arabidopsis thaliana
SCARECROW	SCARECROW	gb U62798.1	NCBI	Arabidopsis thaliana
SCL3	scarecrow-like protein 3	NM_103925.5	NCBI	Arabidopsis thaliana
Os01g0842200	Os01g0842200	NM_001051306.1	NCBI	Oryza sativa
Os12g0122000	Os12g0122000	NM_001072559.1	NCBI	Oryza sativa

Figura 15 - Alinhamento dos domínios conservados da Superfamília GRAS. Cores semelhantes na mesma coluna mostram similaridade de aminoácidos, mostrando apenas pequenas regiões de sequências de aminoácidos conservadas ao comparar diferentes genes entre as espécies de *Solanum lycopersicum*, *Arabidopsis thaliana* e *Oryza sativa*.

Figura 16 - Árvore filogenética da Família GRAS com sequências gênicas de tomateiro, *Arabidopsis* e arroz. As sequências foram obtidas através dos bancos de dados do Sol Genomics Network e do NCBI. A tradução e a identificação de domínios conservados nas sequências de nucleotídeos foi feita através dos *softwares* Expasy e CD Search e o alinhamento e a construção da árvore filogenética foi realizada pelo *software* Mega 5.

5 CONCLUSÕES

Com base nos resultados obtidos no presente trabalho, conclui-se que:

- O alelo *Rg1* aumenta a regeneração *in vitro* atuando especificamente na fase de aquisição de competência;
- Existem 138 genes na região cromossômica que o gene RG1 está inserido, sendo esta região delimitada entre o gene CrtR-b e o marcador P5;
- Ao compararmos os resultados obtidos através da plataforma SOLiD de MT-*Rg1* com MT, observa-se um maior número de genes regulados negativamente do que positivamente em *Rg1* durante incubação por 1 dia em ANA;
- Embora o segmento de introgressão em MT-*Rg1* seja pequeno, 361 genes são diferencialmente expressos entre os dois genótipos;
- Dentre os genes analisados por RNAseq e confirmados por qRT-PCR, destacam-se GRAS 10 e Serine/threonine protein phosphatase 7, os quais demonstram estar intimamente ligados a fase de aquisição de competência.

Desse modo, tem-se como perspectiva:

- Utilizar os dados de RNAseq gerados pela plataforma SOLiD para encontrar SNPs nos 138 genes candidatos para *Rg1*. Estes SNPs serão utilizados para a obtenção de novos marcadores CAPS com o intuito de encontrar polimorfismos entre MT, MT-*Rg1* e os 30 recombinantes encontrados para, desta forma, reduzir a lista de genes candidatos a *RG1*;
- Novas análises por qRT-PCR serão feitas com o intuito de encontrar novos genes diferencialmente expressos em MT-*Rg1* nos tratamentos ligados a aquisição de competência. Com isso, será desvendado o envolvimento de novos genes relacionados a este processo, bem como a influência de diversas vias metabólicas já conhecidas.

REFERÊNCIAS

ACHARD, P.; CHENG, H.; DE GRAUWE, L.; DECAT, J.; SCHOUTTETEN, H.; MORITZ, T.; VAN DER STRAETEN, D.; PENG, J. R.; HARBERD, N. P. Integration of plant responses to environmentally activated phytohormonal signals. **Science**, Washington, v. 311, p. 91-94, 2006.

AIDA, M.; ISHIDA, T.; TASAKA, M. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the *CUP-SHAPED COTYLEDON* and *SHOOT MERISTEMLESS* genes. **Development**, Washington, v. 126, p. 1563-1570, 1999.

AIDA, M.; TASAKA, M. Genetic control of shoot organ boundaries. Current Opinion in Plant Biology, London, v. 9, p. 72-77, 2006.

ALTSCHUL, S. F.; GISH, W.; MILLER, W.; MYERS, E. W.; LIPMAN, D. J. Basic local alignment search tool. **Journal of Molecular Biology**, London, v. 215, n. 3, p. 403-10, 1990.

ALVAREZ-BUYLLA, E. R.; PELAZ, S.; LILJEGREN, S. J.; GOLD, S. E.; BURGEFF, C.; DITTA, G. S.; DE POUPLANA, L. R.; MARTÍNEZ-CASTILLA, L.; YANOFSKY, M. F. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. **Proceedings of the National Academy of Sciences**, Washington, v. 97, p. 5328-5333, 2000.

ANDREEVA, A. V.; KUTUZOV, M. A. RdgC/PP5-related phosphatases: novel components in signal transduction. **Cellular Signalling**, New York, v. 11, p. 555–562, 1999.

ANDREEVA, A. V.; KUTUZOV, M. A. PPP family of protein Ser/Thr phosphatases: two distinct branches? **Molecular Biology and Evolution**, Chicago, v. 18, p. 448-452, 2001.

ARNAUD, N.; GIRIN, T.; SOREFAN, K.; FUENTES, S.; WOOD, T. A.; LAWRENSON, T.; SABLOWSKI, R.; OSTERGAARD, L. Gibberellins control fruit patterning in Arabidopsis thaliana . **Genes & Development**, New York, v. 24, p. 2127-2132, 2010.

ATTA, R.; LAURENS, L.; BOUCHERON-DUBUISSON, E.; GUIVARC'H, A.; CARNERO, E.; GIRAUDAT-PAUTOT, V.; RECH, P.; CHRIQUI, D. Pluripotency of *Arabidopsis* xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown *in vitro*. **The Plant Journal**, Oxford, v. 57, p. 626–44, 2009.

BAI, M. Y.; ZHANG, L. Y.; GAMPALA, S. S.; ZHU, S. W.; SONG, W. Y.; CHONG, K.; WANG, Z. Y. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. **Proceedings of the National Academy of Sciences**, Washington, v. 104, p. 13839–13844, 2007.

BAURLE, I.; LAUX, T. Apical meristems: the plant's fountain of youth. **BioEssays**, Cambridge, v. 25, p. 961–970, 2003.

BENFEY, P. N.; LINSTEAD, P. J.; ROBERTS, K.; SCHIEFELBEIN, J. W.; HAUSER, M-T.; AESCHBACHER, R. A. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. **Development**, Washington, v. 119, p. 57–70, 1993.

BERGER, Y.; HARPAZ-SAAD, S.; BRAND, A.; MELNIK, H.; SIRDING, N.; ALVAREZ, J. P.; ZINDER, M.; SAMACH, A.; ESHED, Y.; ORI, N. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. **Development**, Washington, v. 136, p. 823-832, 2009.

BOITEN, H.; AZMI, A.; DILLEN, W.; SCHEPPER, S.; DEBERGH, P.; GERATS, T.; ONCKELEN, H.; PRINSEN, E. The *Rg-1* encoded regeneration capacity of tomato is not related to an altered cytokinin homeostasis. **The New Phytologist**, London, v. 161, p. 761-771, 2004.

BOLLE, C. The role of GRAS proteins in plant signal transduction and development. **Planta**, Berlin, v. 218, p. 683–692, 2004.

BOLLE, C.; KONCZ, C.; CHUA, N. H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. **Genes & Development**, New York, v. 14, p. 1269–1278, 2000.

BONNETT JR, H. T.; TORREY, J. G. Comparative anatomy of endogenous bud and lateral root formation in *Convolvulus arvensis* roots cultured *in vitro*. **American Journal of Botany**, New York, v. 53, p. 496-507, 1966.

BONSHTIEN, A.; LEV, A.; GIBLY, A.; DEBBIE, P.; AVNI, A.; SESSA, G. Molecular properties of the Xanthomonas AvrRxv effector and global transcriptional changes determined by its expression in resistant tomato plants. **Molecular Plant-Microbe Interactions**, St Paul, v. 18, p. 300–310, 2005.

BOWMAN, J. L. The YABBY gene family and abaxial cell fate. Current Opinion in Plant Biology, London, v. 3, p. 17–22, 2000.

BOWMAN, J. L.; SMYTH, D. R. CRABS CLAW, a gene that regulates carpel and nectary development in *Arabidopsis*, encodes a novel protein with zinc finger and helix-loop-helix domains. **Development**, Washington, p. 126, v. 2387–2396, 1999.

CARY, A. J.; CHE, P.; HOWELL, S. H. Developmental events and shoot apical meristem gene expression patterns during shoot development in *Arabidopsis thaliana*. The Plant Journal, Oxford, v. 32, p. 867-877, 2002.

CARY, A.J.; UTTAMCHANDANI, S.J.; SMETS, R.; VAN ONCKELEN, H.A., HOWELL, S.H. *Arabidopsis* mutants with increased organ regeneration in tissue culture are more competent to respond to hormonal signals. **Planta**, Berlin, v. 213, p. 700-707, 2001.

CHE, P.; LALL, S.; HOWELL, S. H. Developmental steps in acquiring competence for shoot development in *Arabidopsis* tissue culture. **Planta**, Berlin, v. 226, p. 1183–1194, 2007.

CHE, P.; LALL, S.; NETTLETON, D.; HOWELL, S. H. Gene expression programs during shoot, root, and callus development in *Arabidopsis* tissue culture. **Plant Physiology**, Rockville, v. 141, p. 620-637, 2006.

CHRISTIANSON, M. L.; WARNICK, D. A. Organogenesis *in vitro* as a developmental process. **HortScience**, St. Joseph, v. 23, p. 515-519, 1988.

CHRISTIANSON, M. L.; WARNICK, D. A. Temporal requirement for phytohormone balance in the control of organogenesis *in vitro*. **Developmental Biology**, New York, v. 112, p. 494–497, 1985.

CHRISTIANSON, M. L.; WARNICK, D. A. Competence and determination in the process of in vitro shoot organogenesis. **Developmental Biology**, New York, v. 101, p. 382-390, 1983.

COEN, E. S.; MEYEROWITZ, E. M. The war of the whorls: Genetic interactions controlling flower development. **Nature**, London, v. 353, p. 31–37, 1991.

CONG, B.; BARRERO, L. S.; TANKSLEY, S. D. Regulatory change in YABBYlike transcription factor led to evolution of extreme fruit size during tomato domestication. **Nature Genetics**, New York, v. 40, p. 800–804, 2008.

CORBIN, D. R.; SAUER, N.; LAMB, C. J. Differential regulation of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants. **Molecular and Cellular Biology**, Washington, v. 7, p. 4337-4344, 1987.

CUI, H. C.; LEVESQUE, M. P.; VERNOUX, T.; JUNG, J. W.; PAQUETTE, A. J.; GALLAGHER, K. L.; WANG, J. Y.; BLILOU, I.; SCHERES, B.; BENFEY, P. N. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. **Science**, Washington, v. 316, p. 421–425, 2007.

CZIKKEL, B. E.; MAXWELL, D. P. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. **Journal of Plant Physiology**, Stuttgart, v. 164, p. 1220–1230, 2007.

DAY, R. B.; TANABE, S.; KOSHIOKA, M.; MITSUI, T.; ITOH, H.; UEGUCHI-TANAKA, M.; MATSUOKA, M.; KAKU, H.; SHIBUYA, N.; MINAMI, E. Two rice GRAS family genes responsive to N-acetyl-chitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells. **Plant Molecular Biology**, Dordrecht, v. 54, p. 261–272, 2004.

DAY, R. B.; SHIBUYA, N.; MINAMI, E. Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor. **Biochimica et Biophysica Acta**, Amsterdam, v. 1625, p. 261–268, 2003.

DE KLERK, G-J.; ARNHOLDT-SCHMITT, B.; LIEBEREI, R.; NEUMANN, K-H. Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects. **Biologia Plantarum**, Praha, v. 39, p. 53-66, 1997.

DE LUCAS, M.; DAVIERE, J. M.; RODRIGUEZ-FALCON, M.; PONTIN, M.; IGLESIAS-PEDRAZ, J. M.; LORRAIN, S.; FANKHAUSER, C.; BLAZQUEZ, M. A.; TITARENKO, E.; PRAT, S. A molecular framework for light and gibberellin control of cell elongation. **Nature**, London, v. 451, p. 480–484, 2008. DI LAURENZIO, L.; WYSOCKA-DILLER, J.; MALAMY, J. E.; PYSH, L.; HELARIUTTA, Y.; FRESHOUR, G.; HAHN, M. G.; FELDMANN, K. A.; BENFEY, P. N. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the *Arabidopsis* root. **Cell**, Cambridge, v. 86, p. 423–433, 1996.

DUCLERCQ, J.; SANGWAN-NORREEL, B.; CATTEROU, M.; SANGWAN, R. S. De novo shoot organogenesis: from art to science. **Trends in Plant Science**, Kidlington, v. 16, p. 597-606, 2011.

EMMANUEL, E.; LEVY, A.A. Tomato mutants as tools for functional genomics. **Current Biology**, London, v. 5, p. 112-117, 2002.

ENGSTROM, E. M.; ANDERSEN, C. M.; GUMULAK-SMITH, J.; HU, J.; ORLOVA, E.; SOZZANI, R.; BOWMAN, J. L. Arabidopsis homologs of the Petunia *HAIRY MERISTEM* gene are required for maintenance of shoot and root indeterminacy. **Plant Physiology**, Rockville, v. 155, p. 735-50, 2011.

FARIA, R. T.; ILLG, R. D. Inheritance of *in vitro* plant regeneration ability in the tomato. **Revista Brasileira de Genética**, Ribeirão Preto, v.19, p. 113-116, 1996.

FENG, S.; MARTINEZ, C.; GUSMAROLI, G.; WANG, Y.; ZHOU, J.; WANG, F.; CHEN, L.; YU, L.; IGLESIAS-PEDRAZ, J. M.; KIRCHER, S.; SCHÄFER, E.; FU, X.; FAN, L. M.; DENG, X. W. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. **Nature**, London, v. 451, p. 475–479, 2008.

FERREIRA, M. E.; CALDAS, L. S.; PEREIRA, E. A. Aplicações da cultura de tecidos no melhoramento de plantas. In: TORRES, A. C. et al. **Cultura de tecidos e transformação de plantas.** Brasília: Embrapa, 1998. v. 1, p. 21-43.

FODE, B.; SIEMSEN, T.; THUROW, C.; WEIGEL, R.; GATZ, C. The *Arabidopsis* GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. **The Plant Cell**, Baltimore, v. 20, p. 3122–3135, 2008.

FRAY, R.G.; GRIERSON D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression, **Plant Molecular Biology**, Dordrecht, v. 22, p. 589–602, 1993.

FU, X. D.; RICHARDS, D. E.; AIT-ALI, T.; HYNES, L. W.; OUGHAM, H.; PENG, J. R.; HARBERD, N. P. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. **The Plant Cell**, Baltimore, v. 14, p. 3191–3200, 2002.

FULTON, T. M.; CHUNWONGSE, J.; TANKSLEY, S. D. Microprep Protocol for Extraction of DNA rom Tomato and other Herbaceous Plants. **Plant Molecular Biology Reporter**, New York, v. 13, p. 207-209, 1995.

GALLAGHER, K. L.; BENFEY, P. N. Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement. **The Plant journal**, Oxford, v. 57, p. 785–797, 2009.

GALLOIS, J-L.; WOODWARD, C.; REDDY, G. V.; SABLOWSKI, R. Combined *SHOOT MERISTEMLESS* and *WUSCHEL* trigger ectopic organogenesis in *Arabidopsis*. **Development**, Washington, v. 129, p. 3207-3217, 2002.

GALPAZ, N.; RONEN, G.; KHALFA, Z.; ZAMIR, D.; HIRSCHBERG, J. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. **The Plant Cell**, Baltimore, v. 18, p. 1947-1960, 2006.

GAMBORG, O.L.; MILLER, R.A.; OJIMA, K. Nutrient requirement of suspension cultures of soybean root cells. **Experimental Cell Research**, New York, v. 50, p. 151-158, 1968.

GAO, M. J.; PARKIN, I. A. P.; LYDIATE, D. J.; HANNOUFA, A. An auxin-responsive SCARECROW-like transcriptional activator interacts with histone deacetylase. **Plant Molecular Biology**, Dordrecht, v. 55, p. 417–431, 2004.

GOLDBERG, R. B.; BARKER, S. J.; PEREZ-GRAU, L. Regulation of gene expression during plant embryogenesis. Cell, Cambridge, v. 56, p. 149-160, 1989.

GORDON, S. P.; HEISLER, M. G.; REDDY, G. V.; OHNO, C.; DAS, P.; MEYEROWITZ, E. M. Pattern formation during de novo assembly of the *Arabidopsis* shoot meristem. **Development**, Washington, v. 134, p. 3539-3548, 2007.

GREB, T.; CLARENZ, O.; SCHAFER, E.; MULLER, D.; HERRERO, R.; SCHMITZ, G.; THERES, K. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. **Genes & Development**, New York, v. 17, p. 1175–1187, 2003.

GREEN, T. R.; RYAN, C. A. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. **Science**, Washington, v. 175, p. 776-777, 1972.

HARA, K.; VAGI, M.; KOIZUMI, N.; KUSANO, T.; SANO, H. Screening of Wound-Responsive Genes Identifies an Immediate-Early Expressed Gene Encoding a Highly Charged Protein in Mechanically Wounded Tobacco Plants. **Plant and Cell Physiology**, Tokyo, v. 41, p. 684-691, 2000.

HELARIUTTA, Y.; FUKAKI, H.; WYSOCKA-DILLER, J.; NAKAJIMA, K.; JUNG, J.; SENA, G.; HAUSER, M. T.; BENFEY, P. N. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. **Cell**, Cambridge, v. 101, p. 555–567, 2000.

HEO, J. O.; CHANG, K. S.; KIM, I. A.; LEE, M. H.; LEE, S. A.; SONG, S. K.; LEE, M. M.; LIM, J. Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the Arabidopsis root. **Proceedings of the National Academy of Sciences**, Washington, v. 108, p. 2166–2171, 2011.

HICKS, G. S. Shoot induction and organogenesis *in vitro*: a developmental perspective. In Vitro Cellular & Developmental Biology-Plant, Oxon, v. 30, p. 10-15, 1994.

HIRANO, K.; ASANO, K.; TSUJI, H.; KAWAMURA, M.; MORI, H.; KITANO, H.; UEGUCHI-TANAKA, M.; MATSUOKA, M. Characterization of the molecular mechanism

underlying gibberellin perception complex formation in rice. The Plant Cell, Baltimore, v. 22, p. 2680–2696, 2010.

HIRSCH, S.; KIM, J.; MUNOZ, A.; HECKMANN, A. B.; DOWNIE, J. A.; OLDROYD, G. E. D. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. **The Plant Cell**, Baltimore, v. 21, p. 545–557, 2009.

HOU, X. L.; LEE, L.Y.C.; XIA, K. F.; YEN, Y. Y.; YU, H. DELLAs modulate jasmonate signaling via competitive binding to JAZs. **Developmental Cell**, Cambridge, v. 19, p. 884–894, 2010.

HUSSAIN, A.; CAO, D. N.; PENG, J. R. Identification of conserved tyrosine residues important for gibberellin sensitivity of Arabidopsis RGL2 protein. **Planta**, Berlin, v. 226, p. 475–483, 2007.

HUSSAIN, A.; CAO, D. N.; CHENG, H.; WEN, Z. L.; PENG, J. R. Identification of the conserved serine/threonine residues important for gibberellin-sensitivity of Arabidopsis RGL2 protein. **The Plant Journal**, Oxford, v. 44, p. 88–99, 2005.

ITOH, H.; SASAKI, A.; UEGUCHI-TANAKA, M.; ISHIYAMA, K.; KOBAYASHI, M.; HASEGAWA, Y.; MINAMI, E.; ASHIKARI, M.; MATSUOKA, M. Dissection of the phosphorylation of rice DELLA protein, SLENDER RICE1. **Plant and Cell Physiology**, Tokyo, v. 46, p. 1392–1399, 2005.

JASINSKI, S.; TATTERSALL, A.; PIAZZA, P.; HAY, A.; MARTINEZ-GARCIA, J. F.; SCHMITZ, G.; THERES, K.; McCORMICK, S.; TSIANTIS, M. PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato. **The Plant Journal**, Oxford, v. 56, p. 603–612, 2008.

KALO, P.; GLEASON, C.; EDWARDS, A.; MARSH, J.; MITRA, R. M.; HIRSCH, S.; JAKAB, J.; SIMS, S.; LONG, S. R.; ROGERS, J.; KISS, G. B.; DOWNIE, J. A.; OLDROYD, G. E. D. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. **Science**, Washington, v. 308, p. 1786–1789, 2005.

KAMIYA, N.; ITOH, J. I.; MORIKAMI, A.; NAGATO, Y.; MATSUOKA, M. The SCARECROW gene's role in asymmetric cell divisions in rice plants. **The Plant Journal**, Oxford, v. 36, p. 45–54, 2003.

KENDE, H. Ethylene biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, Palo Alto, v. 44, p. 283-307, 1993.

KENNETH, J.; THOMAS, D. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta Ct}$ method. **Methods**, San Diego, v. 25, p. 402–408, 2001.

KERBAUY, G. B. Competência e determinação celular em cultura de tecidos de plantas. In: TORRES, A. C. et al. **Cultura de tecidos e transformação de plantas**. Brasília: Embrapa, 1999. v. 2, p. 519-531.

KIM, M.; PHAM, T.; HAMIDI, A.; MCCORMICK, S.; KUZOFF, R. K.; SINHA, N. Reduced leaf complexity in tomato *wiry* mutants suggests a role for *PHAN* and *KNOX* gene in generating compound leaves. **Development**, Washington, v. 130, p. 4405-4415, 2003.

KOORNNEEF, M.; BADE, J.; HANHART, C.; HORSMAN, K.; SCHEL, J.; SOPPE, W.; VERKERK, R.; ZABEL, P. Characterization and mapping of a gene controlling shoot regeneration in tomato. **The Plant Journal**, Oxford, v. 3, p. 131-141, 1993.

KOORNNEEF, M.; BOSMA, T. D. G.; HANHART, C. J.; VAN-DER-VEEN, J. H.; ZEEVAART, J. A. D. The isolation and characterization of gibberellin-deficient mutants in tomato. **Theoretical and Applied Genetics**, New York, v. 80, p. 852-857, 1990.

KOORNNEEF, M.; HANHART, C. J.; MARTINELLI, L. A genetic analysis of cell culture traits in tomato. **Theoretical and Applied Genetics**, New York, v. 74, p. 633-641, 1987.

KOORNNEEF, M.; HANHART, C.; JONGSMA, M.; OMA, I.; WEIDE, R.; ZABEL, P.; HILLE, J. Breeding of a tomato genotype readily accessible to genetic manipulation. **Plant Science**, Amsterdam, v. 45, p. 201-208, 1986.

KUTUZOV, M. A.; BENNETT, N.; ANDREEVA, A. V. Interaction of plant protein Ser/Thr phosphatase PP7 with calmodulin. **Biochemical and Biophysical Research Communications**, New York, v. 289, p. 634–640, 2001.

LAUX, T. The stem cell concept in plants: a matter of debate. Cell, Cambridge, v. 113, p. 281–283, 2003.

LEE, J. Y.; BAUM, S. F.; OH, S. H.; JIANG, C. Z.; CHEN, J. C.; BOWMAN, J. L. Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. **Development**, Washington, v. 132, p. 5021–5032, 2005.

LEHTI-SHIU, M. D.; ADAMCZYK, B. J.; FERNANDEZ, D. E. Expression of MADS-box genes during the embryonic phase in Arabidopsis. **Plant Molecular Biology**, Dordrecht, v. 58, p. 89–107, 2005.

LENHARD, M.; JÜRGENS, G.; LAUX, T. The *WUSCHEL* and *SHOOTMERISTEMLESS* genes fulfill complementary roles in Arabidopsis shoot meristem regulation. **Development**, Cambridge, v. 129, p. 3195-3206, 2002.

LI, X. Y.; QIAN, Q.; FU, Z. M.; WANG, Y. H.; XIONG, G. S.; ZENG, D. L.; WANG, X. Q.; LIU, X. F.; TENG, S.; HIROSHI, F.; YUAN, M.; LUO, D.; HAN, B.; LI, J. Control of tillering in rice. **Nature**, London, v. 422, p. 618–621, 2003.

LIM, J.; JUNG, J. W.; LIM, C. E.; LEE, M. H.; KIM, B. J.; KIM, M.; BRUCE, W. B.; BENFEY, P. N. Conservation and diversification of SCARECROW in maize. **Plant Molecular Biology**, Dordrecht, v. 59, p. 619–630, 2005.

LIM, J.; HELARIUTTA, Y.; SPECHT, C. D.; JUNG, J.; SIMS, L.; BRUCE, W. B.; DIEHN, S.; BENFEY, P. N. Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial patterning in diverse meristems. **The Plant Cell**, Baltimore, v. 12, p. 1307–1318, 2000.

LIMA, J. E.; BENEDITO, V. A.; FIGUEIRA, A.; PERES, L. E. P. Callus, shoot and hairy root formation *in vitro* as affected by the sensitivity to auxin and ethylene in tomato mutants. **Plant Cell Reports**, New York, v. 28, p. 1169–1177, 2009.

LIMA, J. E.; CARVALHO, R. F.; TULMANN NETO, A.; FIGUEIRA, A.; PERES, L. E. P. Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration. **Plant Science**, Amsterdam, v. 167, p. 753-757, 2004.

LIU, H. T.; LI, G. L.; CHANG, H.; SUN, D. Y.; ZHOU, R. G.; LI, B. Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in *Arabidopsis*. **Plant, Cell & Environment**, Nottinghan, v. 30, p. 156–164, 2007.

LOMBARDI, S. P. Estudo functional de um *locus* de regeneração (*Rg1*) vindo de *Solanum peruvianum*, uma espécie selvagem relacionada ao tomateiro. 2008. 83 f. Tese (Doutorado em Fisiologia e Bioquímica de Plantas) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 2008.

LOMBARDI-CRESTANA, S.; AZEVEDO, M. S.; SILVA, G. F. F.; PINO, L. E.; APPEZZATO-DA-GLÓRIA, B.; FIGUEIRA, A.; NOGUEIRA, F. T. S.; PERES, L. E. P. Mutant and double mutant analysis of root and shoot formation capacity in tomato (*Solanum lycopersicum* L.) give insights into the molecular basis of organogenic competence. Journal of Experimental Botany, Oxford, v. 63, 2012. No prelo.

LUAN, S. Protein phosphatases in plants. **Annual Review of Plant Biology**, Palo Alto, v. 54, p. 63–92, 2003.

LUAN, S. Protein phosphatases and signaling cascades in higher plants. **Trends in Plant Science**, Kidlington, v. 3, p. 271-275, 1998.

MA, H. S.; LIANG, D.; SHUAI, P.; XIA, X. L.; YIN, W. L. The salt- and drought- inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. **Journal of Experimental Botany**, Oxford, v. 61, p. 4011–4019, 2010.

MAYROSE, M.; EKENGREN, S. K.; MELECH-BONFIL, S.; MARTIN, G. B.; SESSA, G. A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response **Molecular Plant Pathology**, London, v. 7, p. 593–604, 2006.

MEINKE, D. W. Seed development in *Arabidopsis thaliana*. In: MEYEROWITZ, E.; SOMERVILLE, C. (Eds.): *Arabidopsis*. New York: Cold Spring Harbor Laboratory Press, 1994. p. 253-295.

MEINKE, D. W. Perspectives on genetic analysis of plant embryogenesis. **The Plant Cell**, Baltimore, v. 3, p. 857-866, 1991a.

MEINKE, D. W. Embryonic mutants of *Arabidopsis thaliana*. Developmental Genetics, Cambridge, v. 12, p. 382-392, 1991b.

MOLLER, S. G.; KIM, Y. S.; KUNKEL, T.; CHUA, N. H. PP7 is a positive regulator of blue light signaling in *Arabidopsis*. **The Plant Cell**, Baltimore, v. 15, p. 1111–1119, 2003.

MOROHASHI, K.; MINAMI, M.; TAKASE, H.; HOTTA, Y.; HIRATSUKA, K. Isolation and characterization of a novel GRAS gene that regulates meiosis-associated gene expression. **The Journal of Biological Chemistry**, Baltimore, v. 278, p. 20865–20873, 2003.

MOTTE, H.; VERSTRAETEN, I.; WERBROUCK, S.; GEELEN, D. CUC2 as an early marker for regeneration competence in *Arabidopsis* root explants. **Journal of Plant Physiology**, Stuttgart, v. 168, p. 1598-1601, 2011.

MURASE, K.; HIRANO, Y.; SUN, T. P.; HAKOSHIMA, T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. **Nature**, London, v. 456, p. 459–464, 2008.

MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. **Physiologia Plantarum**, Kobenhavn, v. 15, p. 473-479, 1962.

MYSORE, K. S.; CRASTA, O. R.; TUORI, R. P.; FOLKERTS, O.; SWIRSKY, P. B.; MARTIN, G. B. Comprehensive transcript profiling of Pto- and Prfmediated host defense responses to infection by *Pseudomonas syringae* pv. tomato. **The Plant Journal**, Oxford, v. 32, p. 299–315, 2002.

NAKAJIMA, K.; SENA, G.; NAWY, T.; BENFEY, P. N. Intercellular movement of the putative transcription factor SHR in root patterning. **Nature**, London, v. 413, p. 307–311, 2001.

OH, K.; IVANCHENKO, M. G.; WHITE, T. J.; LOMAX, T. L. The *diageotropica* gene of tomato encodes a cyclophilin: a novel player in auxin signalling. **Planta**, Berlin, v. 224, p. 133-144, 2006.

ORASHAKOVA, S.; LANGE, M.; LANGE, S.; WEGE, S.; BECKER, A. The CRABS CLAW ortholog from California poppy (*Eschscholzia californica*, Papaveraceae), EcCRC, is involved in floral meristem termination, gynoecium differentiation and ovule initiation. **The Plant Journal**, Oxford, v. 58, p. 682–693, 2009.

ORI, N.; JUAREZ, M. T.; JACKSON, D.; YAMAGUCHI, J.; BANOWETZ, G.; HAKE, S. Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter. **The Plant Cell**, Baltimore, v. 11, p. 1073–1080, 1999.

OHTANI, M.; SUGIYAMA, M. Involvement of SRD2-mediated activation of snRNA transcription in the control of cell proliferation competence in Arabidopsis. **The Plant Journal**, Oxford, v. 43, p. 479–490, 2005.

PENG, J. R.; CAROL, P.; RICHARDS, D. E.; KING, K. E.; COWLING, R. J.; MURPHY, G. P.; HARBERD, N. P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. **Genes & Development**, New York, v. 11, p. 3194–3205, 1997.

PERES, L. E. P.; KERBAUY, G. B. High cytokinin accumulation following root tip excision changes the endogenous auxin-to-cytokinin ratio during root-to-shoot conversion in

Catasetum fimbriatum Lindl. (Orchidaceae). **Plant Cell Reports**, New York, v. 18, p. 1002-1006, 1999.

PERES, L. E. P.; AMAR, S.; KERBAUY, G. B.; SALATINO, A.; ZAFFARI, G. R.; MERCIER,H. Effects of auxin, cytokinin and ethylene treatments on the endogenous ethylene and auxin-to-cytokinin ratio related to direct root tip conversion of *Catasetum fimbriatum* Lindl. (Orchidaceae) into buds. Journal of Plant Physiology, Stuttgart, v. 155, p. 551-555, 1999.

PERES, L. E. P. Bases fisiológicas e genéticas da regeneração de plantas *in vitro*. **Revista Biotecnologia Ciência & Desenvolvimento**, Brasília, v. 4, n. 25, p. 44-48, 2002.

PERES, L. E. P.; MORGANTE, P. G.; VAN SLUYS, M-A; KRAUS, J. E.; VECHI, C. Shoot regeneration capacity from roots and transgenic hairy roots of different tomato cultivars and wild related species. **Plant Cell, Tissue and Organ Culture**, Dordrecht, v. 65, p. 37-44, 2001.

PFAFFL, M. W. A new mathematical model for relative quantification in real-time RT-PCR. **Nucleic Acids Research**, London, v. 29, p. 2002–2007, 2001.

PFAFFL, M. W.; HAGELEIT, M. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT–PCR. **Biotechnology Letters**, Kew, v. 23, p. 275–282, 2002.

PINO, L. E.; LOMBARDI-CRESTANA, S.; AZEVEDO, M. S.; FARINHA, T. B.; BORGO, L.; QUECINI, V.; FIGUEIRA, A.; PERES, L. E. P. The *Rg1* allele as a valuable tool for genetic transformation of the tomato Micro-Tom model system. **Plant Methods**, v. 6, p. 23, 2010.

PYSH, L. D.; WYSOCKA-DILLER, J. W.; CAMILLERI, C.; BOUCHEZ, D.; BENFEY, P.N. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. **The Plant Journal**, Oxford, v. 18, p. 111–119, 1999.

RODRIGUES, M. A.; KERBAUY, G. B. Meristemas: fontes de juventude e plasticidade no desenvolvimento vegetal. Hoehnea, São Paulo, v. 36, n.4, p. 525-549, 2009.

SABATINI, S.; HEIDSTRA, R.; WILDWATER, M.; SCHERES, B. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. **Genes & Development**, New York, v. 17, p. 354–358, 2003.

SAITOU, N.; NEI, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. **Molecular Biology and Evolution**, Chicago, v. 4, p. 406-425, 1987.

SAKAMOTO, T.; KAMIYA, N.; UEGUCHI-TANAKA, M.; IWAHORI, S.; MATSUOKA, M. *KNOX* homeodomain protein directly suppresses the expression of gibberellin biosynthetic gene in the tobacco shoot apical meristem. **Genes & Development**, New York, v. 15, p. 581-590, 2001.

SAMBROOK, J.; FRITSCH, E. F.; MANIATIS T. **Molecular cloning:** a laboratory manual. New York: Cold Spring Harbor Laboratory Press, 1989.

SANCHEZ, C.; VIELBA, J. M.; FERRO, E.; COVELO, G.; SOLE, A.; ABARCA, D.; DE MIER, B. S.; DIAZ-SALA, C. Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species. **Tree Physiology**, Victoria, v. 27, p. 1459–1470, 2007.

SAROJAM, R.; SAPPL, P. G.; GOLDSHMIDT, A.; EFRONI, I.; FLOYD, S. K.; ESHED, Y.; BOWMAN, J. L. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. **The Plant Cell**, Baltimore, v. 22, p. 2113–2130, 2010.

SCHMIDT, D. D.; VOELCKEL, C.; HARTL, M.; SCHMIDT, S.; BALDWIN, I. T. Specificity in ecological interactions: attack from the same lepidopteran herbivore results in species-specific transcriptional responses in two solanaceous host plants. **Plant Physiology**, Rockville, v. 138, p. 1763–1773, 2005.

SCHOOF, H.; LENHARD, M.; HAECKER, A.; MAYER, K. F. X.; JÜRGENS, G.; LAUX, T. The stem cell population of *Arabidopsis* shoot meristems is maintained by a regulatory loop between the *CLAVATA* and *WUSCHEL* genes. **Cell**, Cambridge, v. 100, p. 635–644, 2000.

SCHUMACHER, K.; SCHMITT, T.; ROSSBERG, M.; SCHMITZ, G.; THERES, K. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. **Proceedings of the National Academy of Sciences of the USA**, Washington, v. 96, p. 290-295, 1999.

SHEERIN, D. J.; BUCHANAN, J.; KIRK, C.; HARVEY, D.; SUN, X.; SPAGNUOLO, J.; LI, S.; LIU, T.; WOODS, V. A.; FOSTER, T.; JONES, W. T.; RAKONJAC, J.) Inter- and intra-molecular interactions of Arabidopsis thaliana DELLA protein RGL1. **Biochemical Journal**, Colchester, v. 435, p. 629–639, 2011.

SILVERSTONE, A. L.; CIAMPAGLIO, C. N.; SUN, T. The *Arabidopsis* RGA gene encodes a transcriptional regulator repressing the gibberellins signal transduction pathway. **The Plant Cell**, Baltimore, v. 10, p. 155–169, 1998.

SINHA, N. R.; WILLIAMS, R. E.; HAKE, S. Overexpression of the maize homeobox gene, *KNOTTED1*, causes a switch from determinate to indeterminate cell fates. **Genes & Development**, New York, v. 7, p. 787-795, 1993.

SITNIKOVA, T.; RZHETSKY, A.; NEI, M. Interior- branched and bootstrap tests of phylogenetic trees. **Molecular Biology and Evolution**, Chicago, v. 12, p. 319-333, 1995.

SKOOG, F.; MILLER, C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. **Symposia of the Society for Experimental Biology**, Cambridge, v. 11, p. 118-130, 1957.

SMIT, P.; RAEDTS, J.; PORTYANKO, V.; DEBELLE, F.; GOUGH, C.; BISSELING, T.; GEURTS, R. NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. **Science**, Washington, v. 308, p. 1789–1791, 2005.

SMITH, L. G.; JACKSON, D.; HAKE, S. Expression of *knotted1* marks shoot meristem formation during maize embryogenesis. **Developmental Genetics**, Cambridge, v. 16, p. 344-348, 1995.

SNYMAN, M.; CRONJE, M. J. Modulation of heat shock factors accompanies salicylic acidmediated potentiation of Hsp70 in tomato seedlings. **Journal of Experimental Botany**, Oxford, v. 59, p. 2125–2132, 2008.

SOONG, R.; RUSCHOFF, J.; TABITI, K. Detection of colorectal micrometastasis by quantitative RT–PCR of cytokeratin 20 mRNA. **Proceedings of the National Academy of Sciences**, Washington, v. 41, p. 391, 2000.

STUURMAN, J.; JAGGI, F.; KUHLEMEIER, C. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. **Genes & Development**, New York, v. 16, p. 2213–2218, 2002.

SUGIMOTO, K.; GORDON, S. P.; MEYEROWITZ, E. M. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? **Trends in Cell Biology**, Cambridge, v. 21, p. 212-218, 2011.

SUGIMOTO, K.; JIAO, Y.; MEYEROWITZ, E. M. *Arabidopsis* regeneration from multiple tissues occurs via a root development pathway. **Developmental Cell**, Cambridge, v. 18, p. 463-471, 2010.

SUGIYAMA, M. Genetic analysis of plant morphogenesis *in vitro*. International Review of Cytology, New York, v. 196, p. 67–84, 2000.

SUGIYAMA, M. Organogenesis *in vitro*. Current Opinion in Plant Biology, London, v. 2, p. 61–64, 1999.

SUN, X.; JONES, W. T.; RIKKERINK, E. H. A. GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signaling. **Biochemical Journal**, London, v. 442, p. 1-12, 2012.

SUN, X.; XUE, B.; JONES, W. T.; RIKKERINK, E.; DUNKER, A. K. ; UVERSKY, V. N. A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development. **Plant Molecular Biology**, Dordrecht, v. 77, p. 205–223, 2011.

SUN, X. L.; JONES, W. T.; HARVEY, D.; EDWARDS, P.J.B.; PASCAL, S. M.; KIRK, C.; CONSIDINE, T.; SHEERIN, D. J.; RAKONJAC, J.; OLDFIELD, C. J.; XUE, B.; DUNKER, A. K.; UVERSKY, V. N. N-terminal domains of DELLA proteins are intrinsically unstructured in the absence of interaction with GID1/gibberellic acid receptors. **The Journal of Biological Chemistry**, Baltimore, v. 285, p. 11557–11571, 2010.

SUN, T. P.; GUBLER, F. Molecular mechanism of gibberellin signaling in plants. Annual Review of Plant Biology, Palo Alto, v. 55, p. 197–223, 2004.

98

TAMURA, K.; PETERSON, D.; PETERSON, N.; STECHER, G.; NEI, M.; KUMAR, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. **Molecular Biology and Evolution**, Chicago, v. 28, p. 2731-2739, 2011.

TANAKA-UEGUCHI, M.; ITOH, H.; OYAMA, N.; KOSHIOKA, M.; MATSUOKA, M. Over-expression of a tobacco homeobox gene, NTH15, decreases the expression of a gibberellin biosynthetic gene encoding GA 20-oxidase. **The Plant Journal**, Oxford, v. 15, p. 391-400, 1998.

TIAN, C.; WAN, P.; SUN, S.; LI, J.; CHEN, M. Genome-wide analysis of the GRAS gene family in rice and *Arabidopsis*. **Plant Molecular Biology**, Dordrecht, v. 54, p. 519-32, 2004.

TONG, H. N.; JIN, Y.; LIU, W. B.; LI, F.; FANG, J.; YIN, Y. H.; QIAN, Q.; ZHU, L. H.; CHU, C. C. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. **The Plant Journal**, Oxford, v. 58, p. 803–816, 2009.

TORRES, A. C.; CALDAS, L. S.; BUSO, J. A. Cultura de tecidos e transformação genética de plantas. Brasília: Embrapa–CNPH, 1998. 864 p.

TORRES-GALEA, P.; HUANG, L. F.; CHUA, N. H.; BOLLE, C. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses. **Molecular Genetics & Genomics**, Berlin, v. 276, p. 13–30, 2006.

VANDENABEELE, S.; VAN DER KELEN, K.; DAT, J.; GADJEV, I.; BOONEFAES, T.; MORSA, S.; ROTTIERS, P.; SLOOTEN, L.; VAN MONTAGU, M.; ZABEAU, M.; INZE, D.; VAN BREUSEGEM, F. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. **Proceedings of the National Academy of Sciences**, Washington, v. 100, p. 16113–16118, 2003.

VAN DEN BERG, C.; WILLEMSEN, V.; HENDRICKS, G.; WEISBEEK, P.; SCHERES, B. Short range control of cell differentiation in the Arabidopsis root meristem. **Nature**, London, v. 378, p. 62–65, 1997.

VANDESOMPELE, J.; DE PRETER, K.; PATTYN, F.; POPPE, B.; VAN ROY, N.; DE PAEPE, A.; SPELEMAN, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. **Genome Biology**, London, v. 3, p. 34.1-34.12, 2002.

VERNON, D. M.; MEINKE, D. W. Late embryo-defective Mutants of *Arabidopsis*. **Developmental Genetics**, Cambridge, v. 16, p. 311-320, 1995.

WEST, M. A. L.; HARADA, J. J. Embryogenesis in higher plants: an overview. **The Plant** Cell, Baltimore, v. 5, p. 1361-1369, 1993.

WYSOCKA-DILLER, J.; HELARIUTTA, Y.; HUKAKI, H.; MALAMY, J.; BENFEY, P.N. Molecular analysis of SCARECROW functions reveals a radial patterning mechanism common to root and shoot. **Development**, Washington, v. 127, p. 595–603, 2000.

100

YAMADA, T.; YOKOTA, S.; HIRAYAMA, Y.; IMAICHI, R.; KATO, M.; GASSER, C. S. Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. **The Plant Journal**, Oxford, v. 67, p. 26–36, 2011.

YAMADA, T.; ITO, M.; KATO, M. YABBY2-homologue expression in lateral organs of *Amborella trichopoda* (Amborellaceae). **International Journal of Plant Sciences**, Chicago, v. 165, p. 917–924, 2004.

YANOFSKY, M. F.; MA, H.; BOWMAN, J. L.; DREWS, G. N.; FELDMANN, K. A.; MEYEROWITZ, E. M. The protein encoded by the *Arabidopsis* homeotic gene agamous resembles transcription factors. **Nature**, London, v. 346, p. 35-39, 1990.

YASUTAMI, I.; OZAWA, S.; NISHIDA, T.; SUGIYAMA, M.; KOMAMINE, A. Isolation of temperatue-sensitive mutants of *Arabidopsis thaliana* that are defective in the redifferentiation of shoots. **Plant Physiology**, Rockville, v. 105, p. 815-822, 1994.

ZHANG, Z. L.; OGAWA, M.; FLEET, C. M.; ZENTELLA, R.; HU, J. H.; HEO, J. O.; LIM, J.; KAMIYA, Y.; YAMAGUCHI, S.; SUN, T. P. SCARECROW-LIKE 3 promotes gibberellins signaling by antagonizing master growth repressor DELLA in Arabidopsis. **Proceedings of the National Academy of Sciences**, Washington, v. 108, p. 2160–2165, 2011.